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Motivation Error bounds p-cones The exponential cone

min
x

f (x)

subject to h(x) = 0

Suppose I use my favourite solver and obtain x∗.

The solver tells me that the KKT conditions are satisfied to
ε = 10−6.

It also tells me that ‖h(x∗)‖ ≤ 10−7.

Question 1

Is x∗ close to the set of optimal solutions?

Question 2

Is x∗ close to the set of feasible solutions?

Distance to a set C : dist (x ,C ) := infy∈C ‖x − y‖.
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An example by Sturm (SIOPT’00)

find x ∈ S3

subject to

x11 x33 x13

x33 0 0
x13 0 x33

 � 0.

Feasible set: matrices

x11 0 0
0 0 0
0 0 0

 with x11 ≥ 0.
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An example by Sturm

Let ε > 0

xε :=

 3
√
ε 4
√
ε√

ε ε 0
4
√
ε 0

√
ε


The constraints are “x22 = 0”, “x12 = x33” and “x ∈ S3

+”.
Suppose we measure the violation of constraints by x using

Res(x) := [x2
22 + (x12 − x33)2 + max{−λmin(x), 0}2]1/2

(Res(x) = 0 ⇔x is feasible.) xε does not seem a bad point:

Res(xε) = ε

But...
dist (xε,Feas) ≥ 4

√
ε.

If ε = 10−4, we have Res(xε) = 10−4, but dist (xε,Feas) ≥ 0.1.
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min
x

f (x)

subject to h(x) = 0

Suppose I use my favourite solver and obtain x∗.

The solver tells me that the KKT conditions are satisfied to
ε = 10−6.

It also tells me that ‖h(x∗)‖ ≤ 10−7.

Question 1

Is x∗ close to the set of optimal solutions?

Question 2

Is x∗ close to the set of feasible solutions?

Answer: Not necessarily! Also Res(xε)→ 0 does not imply
dist (xε,Feas)→ 0...
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Conclusions

Using solvers, we input the constraints one by one:
h1(x) = 0, . . . , hn(x) = 0, g1(x) ≤ 0, g2(x) ≤ 0, . . . , gm(x) ≤ 0.

Solvers can only compute the residuals with respect the gi and hj .
(Backward error)

Some measure of error using |hj (x)|, max{gi (x), 0}, or similar
quantities are used

The true distance to the feasible region is almost never computable.
(Forward error)

Backward Error: Res(x) := [x2
22 + (x12 − x33)2 + max{−λmin(x), 0}2]1/2

Forward Error: dist (x ,Feas).

Key point

Forward error 6= O(Backward Error)

The same phenomenon happens for optimal sets: small KKT
residual 6⇒ the point is close to the optimal set.
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What next?

Error bounds provide relations between Forward error and
Backward error.

In this talk: error bounds for problems involving cones.
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Feasibility problems over convex cones

Consider the following feasibility problem over a convex cone K.

find x

subject to x ∈ (L+ a) ∩ K

K: closed convex cone contained in some space E .

L: subspace contained in E .

a ∈ E .

(L+ a is an affine space)
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Motivation

Let ‖ · ‖ be the Euclidean norm and fix x ∈ E .

dist (x ,L+ a) = inf{‖x − y‖ | y ∈ L+ a}
dist (x ,K) = inf{‖x − y‖ | y ∈ K}

dist (x , (L+ a) ∩ K) = inf{‖x − y‖ | y ∈ (L+ a) ∩ K}

Fundamental question

Can we estimate dist (x , (L+ a) ∩ K) using dist (x ,L+ a) and
dist (x ,K)?

X

Backward error: dist (x ,L+ a) + dist (x ,K)

Forward error: dist (x , (L+ a) ∩ K)
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Hölderian error bounds

C1,C2: closed convex sets. C := C1 ∩ C2

Definition (Hölderian error bound)

C1,C2 satisfy a Hölderian error bound
def⇐⇒ for every bounded set B

there exist θB > 0, γB ∈ (0, 1] such that

dist (x , C ) ≤ θB (dist (x ,C1) + dist (x ,C2))γB ∀ x ∈ B.

If γB = γ ∈ (0, 1] for all B, the bound is uniform. If the bound is
uniform with γ = 1, we call it a Lipschitzian error bound.

riC1 ∩ riC2 6= ∅ ⇒ Lipschitzian

C1,C2 are polyhedral ⇒ Lipschitzian (Hoffman’s Lemma)

C1: polyhedral, (riC2) ∩ C1 6= ∅ ⇒ Lipschitzian

C1: affine space, C2: PSD cone ⇒ Uniform Hölderian (Sturm’s error
bound, SIOPT’00)

10 / 26



Motivation Error bounds p-cones The exponential cone

Beyond Sturm’s error bound

Today’s goals

Prove error bounds for general cones beyond Sn
+ as tightly as

possible.

Scott B. Lindstrom; L. and Ting Kei Pong

Error bounds, facial residual functions and applications to the exponential cone

arXiv:2010.16391

Scott B. Lindstrom; L. and Ting Kei Pong

Tight error bounds and facial residual functions for the p-cones and beyond

arXiv:2109.11729

L.

Amenable cones: error bounds without constraint qualifications.

Mathematical Programming, 186:1–48, 2021. (arxiv:1712.06221)

Not gonna lie, these papers are long...
But they are (30%–50% framework) + computation of examples.
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Review of faces

K: closed convex cone
F ⊆ K: closed convex cone

Definition (Face of a cone)

F is a face of K ⇔ if x + y ∈ F , with x , y ∈ K, then x , y ∈ F .

If F ⊆ K is a face, we write F � K.

t

x1
x2
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Ingredient 1 - Error bounds under a constraint qualification

find x (CFP)

subject to x ∈ (L+ a) ∩ K

Proposition (An error bound for when a face satisfying a CQ is known)

Let F � K be such that

a F ∩ (L+ a) = K ∩ (L+ a)

b (riF) ∩ (L+ a) 6= ∅
Then, for every bounded set B, there exists κB > 0 such that

dist (x ,K ∩ (L+ a)) ≤ κB (dist (x ,F) + dist (x ,L+ a)), ∀x ∈ B.

It is not an error bound with respect to L+ a and K, but it is close.
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General strategy

Goal: We want to bound dist (x , (L+ a) ∩ K) using dist (x ,L+ a) and
dist (x ,K).

1 Find F such that
a F ∩ (L+ a) = K ∩ (L+ a)
b (riF) ∩ (L+ a) 6= ∅

Therefore,

dist (x ,K ∩ (L+ a)) ≤ κB (dist (x ,F) + dist (x ,L+ a)), ∀x ∈ B.
(1)

2 Upper bound dist (x ,F) using dist (x ,K) and dist (x ,L+ a).

3 Plug the upper bound in (1).
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How to find F?

We want F such that
a F ∩ (L+ a) = K ∩ (L+ a)
b (riF) ∩ (L+ a) 6= ∅

Idea:
1 Let F1 = K and i ← 1.
2 If (L+ a) ∩ riF i 6= ∅, we are done.
3 If (L+ a) ∩ riF i = ∅, we invoke a separation theorem.

There exists zi ∈ F∗i \ F⊥i and zi ∈ L⊥ ∩ {a}⊥.
Let F i+1 ← F i ∩ {zi}⊥ and i ← i + 1. Go to Step 2.
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How to find F? - Facial Reduction

Theorem (The facial reduction theorem)

Suppose (CFP) is feasible. There is a chain of faces

F` ( · · · ( F1 = K

and vectors (z1, . . . , z`−1) such that:

(i) For all i ∈ {1, . . . , `− 1}, we have

zi ∈ F∗i ∩ L⊥ ∩ {a}⊥,

F i+1 = F i ∩ {zi}⊥.

(ii) F` ∩ (L+ a) = K ∩ (L+ a) and (riF`) ∩ (L+ a) 6= ∅.

L, M. Muramatsu and T. Tsuchiya.

Facial reduction and partial polyhedrality.

SIAM Journal on Optimization, 28(3), 2018 (http://arxiv.org/abs/1512.02549).

J. M. Borwein and H. Wolkowicz.

Regularizing the abstract convex program.

Journal of Mathematical Analysis and Applications, 83(2):495 – 530, 1981.
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General strategy

Goal: We want to bound dist (x , (L+ a) ∩ K) using dist (x ,L+ a) and
dist (x ,K).

1 Find F such that
a F ∩ (L+ a) = K ∩ (L+ a)
b (riF) ∩ (L+ a) 6= ∅

Therefore,

dist (x ,K ∩ (L+ a)) ≤ κB (dist (x ,F) + dist (x ,L+ a)), ∀x ∈ B.
(1)

2 Upper bound dist (x ,F) using dist (x ,K) and dist (x ,L+ a).

3 Plug the upper bound in (1).

Step 1 done!
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Ingredient 2 - One-step Facial Residual Functions

Let

K: closed convex cone.

z ∈ K∗

Definition (1-FRF for K and z)

If ψK,z : R+ × R+ → R+ satisfies

1 ψK,z is nonnegative, monotone nondecreasing in each argument and ψ(0, α) = 0

for every α ∈ R+.

2 whenever x ∈ spanK satisfies the inequalities

dist (x ,K) ≤ ε, 〈x , z〉 ≤ ε,

we have:
dist (x ,K ∩ {z}⊥) ≤ ψK,z (ε, ‖x‖).
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Main result

Theorem (Error bound based on 1-FRF, Lindstrom, L., Pong)

Let K be a closed convex cone such that K ∩ (L+ a) 6= ∅. Let

F` ( · · · ( F1 = K

be a chain of faces of K together with zi ∈ F∗i ∩ L⊥ ∩ {a}⊥ such that

(L+ a) ∩ riF` 6= ∅.

and F i+1 = F i ∩ {zi}⊥ for every i . Let ψi be a 1-FRF for F i , zi . Then, there
is a suitable positively rescaled shift of the ψi , such that for every bounded B
there are κ > 0, M > 0 such that

x ∈ B, dist (x ,K) ≤ ε, dist (x ,L+ a) ≤ ε,

implies
dist (x , (L+ a) ∩ K) ≤ κ(ε+ ϕ(ε,M)),

where ϕ = ψ`−1♦ · · ·♦ψ1, if ` ≥ 2. If ` = 1, we let ϕ be the function
satisfying ϕ(ε, ‖x‖) = ε.

(f♦g)(a, b) := f (a + g(a, b), b).
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Main result

Theorem (Error bound based on 1-FRF, Lindstrom, L., Pong)

Let K be a closed convex cone such that K ∩ (L+ a) 6= ∅. Let

F` ( · · · ( F1 = K

be a chain of faces of K together with zi ∈ F∗i ∩ L⊥ ∩ {a}⊥ such that

(L+ a) ∩ riF` 6= ∅.

and Fi+1 = Fi ∩ {zi}⊥ for every i . Let ψi be a 1-FRF for Fi , zi . Then, there
is a suitable positively rescaled shift of the ψi , such that for every bounded B
there are κ > 0, M > 0 such that

x ∈ B, dist (x ,K) ≤ ε, dist (x ,L+ a) ≤ ε,

implies
dist (x , (L+ a) ∩ K) ≤ κ(ε+ ϕ(ε,M)),

where ϕ = ψ`−1♦ · · ·♦ψ1, if ` ≥ 2. If ` = 1, we let ϕ be the function
satisfying ϕ(ε, ‖x‖) = ε.

(f♦g)(a, b) := f (a + g(a, b), b).
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The case of symmetric cones - L’21

K: symmetric cone (psd matrices, second order cone and etc)

1-FRF: ψF,z (ε, t) = κε+ κ
√
εt

Suppose (L+ a) ∩ K 6= ∅.

There exists γ ≥ 0 such that for every bounded B, there exists κB such
that

dist (x , (L+ a) ∩ K) ≤ κB (dist (x ,L+ a) + dist (x ,K))(2−γ)
, ∀ x ∈ B

where γ is the number of facial reduction steps.

Reminder: z ∈ F∗ and

x ∈ spanF , dist (x ,F) ≤ ε, 〈x , z〉 ≤ ε,

implies
dist (x ,F ∩ {z}⊥) ≤ ψF,z (ε, ‖x‖).
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p-cones

Let ‖x̄‖p := p
√
|x̄1|p + · · ·+ |x̄n|p.

Kn+1
p := {x = (x0, x̄) ∈ Rn+1 | x0 ≥ ‖x̄‖p}

Non-homogeneous, not self-dual even if the inner product is changed1

1-FRF: ψKn+1
p ,z (ε, t) = κε+ κ(εt)αz

αz :=


1
2 if |z̄ |0 = n,
1
p if |z̄ |0 = 1 and p < 2,

min
{

1
2 ,

1
p

}
otherwise,

For every bounded B, there exists κB such that

dist (x , (L+ a)∩Kn+1
p ) ≤ κB (dist (x ,L+ a) + dist (x ,Kn+1

p ))
αz
, ∀ x ∈ B

Tight result: the exponents cannot be improved.

1The automorphism group and the non-self-duality of p-cones, by Ito and L.,
JMAA’19

22 / 26



Motivation Error bounds p-cones The exponential cone

Least squares with p-norm regularization

θ = min
x∈Rn

g(x) :=
1

2
‖Ax − b‖2 +

s∑
i=1

λi‖xi‖p , (LS)

Conic reformulation:

min
t,u,w,y,x

0.5t +
s∑

i=1

λi yi

s.t. Ax − w = b, u = 1

(t, u,w) ∈ Qm+2
r , (yi , xi ) ∈ K

ni +1
p , i = 1, . . . , s.

The optimal set is the intersection of

L+ a =

{
v

∣∣∣∣ 0.5t +
s∑

i=1

λi yi = θ, u = 1,Ax − w = b

}
with the cone

K = Qm+2
r ×Kn1+1

p × · · · × Kns +1
p .

⇒ g satisfies a Hölderian error bound condition with an explicit exponent2

Theorem (LLP’21)

Let x∗ be an optimal solution to (LS). Under a mild condition, g satisfies the KL
property at x∗ with exponent 1− α, where α = min{0.5, 1/p}.

2See Kurdyka- Lojasiewicz Exponent via Inf-projection, by Yu, Li, Pong, FoCM’21
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The exponential cone

Kexp :=
{

(x , y , z) | y > 0, z ≥ yex/y
}
∪ {(x , y , z) | x ≤ 0, z ≥ 0, y = 0} .

x

y

z

1 Applications to entropy optimization, logistic regression, geometric
programming and etc.

2 Available in Alfonso, Hypatia, Mosek, SCS.
https://docs.mosek.com/modeling-cookbook/expo.html.

V. Chandrasekaran, P. Shah

Relative entropy optimization and its applications.

Math. Program. 161, 1–32 (2017)
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Error bounds for the exponential cone - LLP’20

find x (CFP)

subject to x ∈ (L+ a) ∩ Kexp

Four types of error bounds are possible:

Lipschitzian error bound

Hölderian error bound with exponent 1/2

Entropic error bound: for every bounded set B, there exists κB > 0

dist (x, (L+ a) ∩ Kexp) ≤ κBg−∞(max(dist (x,L+ a), dist (x,Kexp))), ∀x ∈ B.

Logarithmic error bound: for every bounded set B, there exists κB > 0

dist (x, (L+ a) ∩ Kexp) ≤ κBg∞(max(dist (x,L+ a), dist (x,Kexp))), ∀x ∈ B,

where

g−∞(t) := −t ln(t), g∞(t) := − 1

ln(t)
, (for t small).

The results above are tight.
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Some remarks

More stuff in the papers! Ex: direct products, techniques for
obtaining FRFs, for proving tightness and so on.

Scott B. Lindstrom; L and Ting Kei Pong
Error bounds, facial residual functions and applications to the
exponential cone
arXiv:2010.16391

Scott B. Lindstrom; L and Ting Kei Pong
Tight error bounds and facial residual functions for the p-cones and
beyond
arXiv:2109.11729

Other advertisement:

T. Liu and L.
Convergence analysis under consistent error bounds
arXiv:2008.12968
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Error bounds provide information on the speed of algorithms

Lipschtizian error bound =⇒ Linear convergence :

dist (xk ,C1 ∩ C2) ≤ Mθk

Hölderian error bound =⇒ Sublinear convergence:

dist (xk ,C1 ∩ C2) ≤ Mk−α

J. M. Borwein, G. Li, and M. K. Tam.

Convergence rate analysis for averaged fixed point iterations in common fixed
point problems.

SIAM Journal on Optimization, 27(1):1–33, 2017.
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Consistent error bounds

C1, . . . ,Cm ⊆ Rn: closed convex sets

Definition (Consistent error bound functions)

Φ : R+ × R+ → R+ is a (strict) consistent error bound function for
C1, . . . ,Cm if:

(i)

dist (x ,∩m
i=1Ci ) ≤ Φ

(
max

1≤i≤m
dist (x ,Ci ), ‖x‖

)
∀ x ∈ Rn;

(ii) ∀b ≥ 0, Φ(·, b) is monotone (increasing) nondecreasing,
right-continuous at 0 and Φ(0, b) = 0;

(iii) ∀a ≥ 0, Φ(a, ·) is monotone nondecreasing.

Fact: ∩m
i=1Ci 6= ∅ ⇒ ∃Φ a strict consistent error bound function for C1, . . . ,Cm

T. Liu and L.

Convergence analysis under consistent error bounds

arXiv:2008.12968 (Revised in 03/2022)
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Main convergence result

C1, . . . ,Cm ⊆ Rn: closed convex sets. C = ∩m
i=1Ci .

Φ: strict consistent error bound function
{xk}: sequence by some reasonable algorithm

For κ > 0 and δ > 0 define φκ,Φ(t) :=
(
Φ(
√
t, κ)

)2

Φ♠κ (t) :=

∫ t

δ

1

φ−κ,Φ(s)
ds

Then, the convergence of {xk} is either finite or ∃τ > 0

dist (xk , C) ≤
√

(Φ♠κ̂ )−1
(
L− τk

)
∀ k ≥ 2`,

where κ̂ = ‖x0‖+ 2 dist (0, C) and L = Φ♠κ̂ (dist 2(x0, C)).
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Gee... that looks like hard. How practical is that?

For consistent error bound functions associated to Hölderian error
bounds (Φ♠κ̂ )−1 has closed form.

For other types of error bounds, there are upper bounds based on
Karamata theory.

f : (0, a]→ (0, ∞) is regularly varying at 0 with index ρ if

lim
x→0+

f (λx)

f (x)
= λρ, λ > 0,

Asymptotic behavior of regularly varying functions under taking
integrals, inverses, powers is very well-understood.

N. H. Bingham, C. M. Goldie, and J. L. Teugels.

Regular Variation.

Encyclopedia of Mathematics and its Applications. Cambridge University Press,
1987.
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Convergence rates under exotic error bounds - LL’20

Recall that

dist (xk , C1 ∩ C2) ≤
√

(Φ♠κ )−1
(
L− τk

)
∀ k ≥ M,

Then,

(i) Entropic error bound: The convergence rate is almost linear: for any
r > 0, the following relations hold as s → +∞√

((Φ)♠κ )−1(−s) = o(s−r ), e−rs = o

(√
((Φ)♠κ )−1(−s)

)
.

(ii) Logarithmic error bound: The convergence rate is logarithmic

η1

(
1

ln(s)

)
≤
√

(Φ♠κ )−1(−s) ≤ η2

(
1

ln(s)

)
, ∀ s ≥ N.

Blue and Red are upper and lower bounds, respectively
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Amenable cones

Definition (Amenable cones)

K is amenable if for every face F of K there is κ > 0 such that

dist (x ,F) ≤ κdist (x ,K), ∀x ∈ spanF .

Symmetric cones (e.g., PSD cone) are amenable (κ = 1)
Polyhedral cones are amenable
Strictly convex cones are amenable. (p-cones, second order cones
and so on)
Amenability is preserved under linear isomorphisms

L, V. Roshchina and J. Saunderson

Amenable cones are particularly nice.

arxiv:2011.07745

L, V. Roshchina and J. Saunderson

Hyperbolicity cones are amenable.

arxiv:2102.06359

L.

Amenable cones: error bounds without constraint qualifications.
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Facial exposedness

F is a face of K def⇐⇒ F � K

1 Projectionally exposed cone (BW’81)
def⇐⇒ ∀F � K there exists a

projection such that PK = F .

2 Amenable cones (L’21)
def⇐⇒ ∀F � K there is κ > 0 such that

dist (x ,F) ≤ κdist (x ,K), ∀x ∈ spanF .

3 Nice cone (P’07)
def⇐⇒ ∀F � K, F∗ = K∗ + F⊥.

4 Facially exposed cone
def⇐⇒

∀F � K, ∃z ∈ K, s.t. F = K ∩ {z}⊥.
Other curious types of cones:

1 Perfect cones (B’78)
def⇐⇒ K is self-dual and every face F � K is

self-dual over spanF .

2 Devious cones (TW’12)
def⇐⇒ K+ spanF is not closed for

{0} 6= F � K.
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A comparison table

Exposed Nice Amenable Projectionally

Preserved
under

finite
intersections

3 3 3 ?

direct
product

3 3 3 3

injective
linear image

3 3 3 3

Symmetric cones 3 3(CT’08) 3 3L’21

Homogeneous cones 3 3(CT’08) 3LRS’20 ?

Hyperbolicity cones 3(R’05) 3 3LRS’21 ?

Facially exposed
P’13⇐ Nice

L’21⇐ Amenable
EPBR⇐ Projectionally

exposed.

There exists a 4D cone that is facially exposed but not nice (Vera,
SIOPT’14).

There exists a 4D cone that is nice but not amenable LRS’20

In dimension 4 or less: Amenable ⇔ Projectionally exposed. LRS’20
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Open questions

Is there an amenable cone that is not projectionally exposed?
(dimK ≥ 5 must hold!)
Which cones are projectionally exposed?

L, V. Roshchina and J. Saunderson

Amenable cones are particularly nice.

arxiv:2011.07745

L, V. Roshchina and J. Saunderson

Hyperbolicity cones are amenable.

arxiv:2102.06359

Figure: A 3D slice of a 4D convex cone that is nice but not amenable
9 / 11



Bonus 1 - Convergence rate results Bonus 2 - Amenable cones Auxiliary material

Kexp

⋃
β∈R Fβ

F∞

F−∞

K∗exp

⋃
β∈R zβ

zβ=−∞

zβ=∞, cone{z∞} = Fne

y -axis

x-axis

z-axis

Figure: The exponential cone and its dual, with faces and exposing vectors
labeled according to our index β.
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Consequences for symmetric cone programming

min
x

cT x

subject to Ax = b

x ∈ K

Over a bounded set B:
For the feasible set:

Under Slater: Forward error = O(Backward Error).

Without Slater: Forward error = O((Backward Error)2−γ

)

For the optimal set:

Strict complementarity holds: x∗ + s∗ ∈ riK ⇔ x∗ ∈ ri (K∩ {s∗}⊥)

Opt = {x | cT x = θ,Ax = b, x ∈ K} intersects ri (K ∩ {s∗}⊥)
Facial reduction finishes in 1 step.

Under Strict complementarity:
Forward error = O(

√
Backward Error)
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