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Linear Quadratic Regulator

ẋ(t) = Ax(t) + Bu(t), x(0) = x0∫︁ ∞

0

[︀
x(t)TQx(t) + u(t)TRu(t)

]︀
dt → min

A ∈ Rn×n,B ∈ Rn×m,Q ≻ 0,R ≻ 0

A,B controllable.
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Explicit solution
Kalman 1960

u(t) = −Kx(t), K ∈ Rm×r

Static linear feedback (vs open-loop control u(t))

K = R−1BTX

X ≻ 0 is the solution of ARE

ATX + XA− XBR−1BTX + Q = 0
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Feedback optimization

ẋ(t) = AKx(t), AK = A− BK

f (K ) =

∫︁ ∞

0

[︀
x(t)T (Q + KTRK )x(t)

]︀
dt → min

Assume K0 ∈ S is known,

S = {K : AK is Hurwitz stable}

6 / 58



Main tools

Lyapunov lemma: ATP + PA = −G , G ≻ 0
has the solution P ≻ 0 iff A is Hurwitz

Bellman lemma: If A is Hurwitz, ẋ = Ax , then∫︀∞
0 x⊤(t)Wx(t)dt = x⊤0 Xx0, where X ≻ 0 is

the solution of Lyapunov equation
A⊤X + XA = −W

Averaging over x(0): Ex(0)x(0)⊤ = Σ
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LQR as matrix optimization problem

f (K ) = Tr (XΣ) → min
K∈S

(A− BK )⊤X + X (A− BK ) + K⊤RK + Q = 0,

S0 = {K ∈ S : f (K ) ≤ f (K0)}
Goal: apply gradient-like methods for the
minimization of f (K ).
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Example 1
n = 1,A = 0, 2B = Q = R = 1, f (K ) = K +1/K

S = R1
+ is unbounded, f (K ) grows near the

boundary.
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Example 2

n = 3,m = 1, S : k1 > 0, k2k3 > k1

S is non-convex unbounded.
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Example 3
m = n = 2,A = B = Q = R = I

S : k11 + k22 < 1 + k11k22 + k12k21, k11 + k22 < 2

S is non-convex
12 / 58



Properties of f (K ) and S : Connectedness of S , S0

Lemma: The sets S and S0 are connected.
Proof: change of variables P = X−1 reduces the
problem to a convex one, while stabilizing K have
the form K = R−1BTP−1, this continuous image
of the convex set P ≻ 0 is connected.
Change of variables allows to reduce LQR to SDP
H.Mohammadi, A.Zare, M.Soltanolkotabi, M.Jovanovic, ArXiv:1912.11899,

2019. We avoid this trick.
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Properties of f (K ) and S : f (K ) is coercive

Lemma: f (Kj) → +∞ for ‖Kj‖ → +∞ or
Kj → K ∈ 𝜕S

It follows from the estimates of solutions of the
Lyapunov equation.
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Properties of f (K ) and S : S0 is bounded

Lemma: S0 is bounded
It follows from the previous lemma.
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Properties of f (K ) and S : f (K ) is differentiable
Kalman 1960, Levine-Athans 1970

∇f (K ) = 2
(︀
RK − BTX

)︀
Y ,

A⊤
KX + XAK + K⊤RK + Q = 0,

AKY + YA⊤
K + Σ = 0, AK = (A− BK ).

The minimizer K* exists, ∇f (K*) = 0. This
implies ARE for K *.

16 / 58



Properties of f (K ) and S : f (K ) is twice
differentiable

1
2
∇2f (K )[E ,E ]=⟨REY ,E ⟩ − 2

⟨︀
B⊤X ′Y ,E

⟩︀
A⊤
KX

′ + X ′AK +M⊤E +
(︀
M⊤E

)︀⊤
= 0

M = RK − B⊤X
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Properties of f (K ) and S : f (K ) is L-smooth on S0

Lemma: The objective f (K ) is L-smooth on S0

with f (K0)-dependent constant L.
L can be large for K close to the stability
boundary. In Example 1 f (K ) = K + 1/K and
f ′′(K ) = 2/K 3. Thus f (K ) is not L-smooth on S .
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Properties of f (K ) and S : Gradient domination

Lemma: Condition LPL holds on S0:

f (K )− f* ≤ 𝜇||∇f (K )||2, 𝜇 > 0

Lemma: f (K ) is strongly convex in the
neighborhood of K*.
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Gradient flow

K̇ (t) = −∇f (K ), K (0) = K0 ∈ S

Theorem: Solution of ODE K (t) exists and
limt→∞ K (t) = K*
Need to solve two Lyapunov equations for every t.
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Gradient descent

Kj+1 = Kj − 𝛾j∇f (Kj)

Step-size choice
Kj+1 ∈ S0

Monotonicity
Armijo-like condition
Such algorithms can be implemented due to
properties of f (K ).

Theorem: limj→∞ Kj = K* with linear rate.
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Alternative step-size for GD

min f (x), x ∈ Rn

xj+1 = xj−𝛾j∇f (xj), 𝛾j=
||∇f (xj)||2

(∇2f (xj)∇f (xj),∇f (xj))

This is Newton method for 1D minimization. For
f (x) quadratic, the method coincides with
steepest descent.
Theorem: For f (x) L-smooth and 𝜇-strongly
convex, the method locally converges, whereas its
damped version converges globally.
Example f (x) = 1

x + x , x0 > 0 small, x1 ≈ 3
2x0.
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A version of conjugate gradient

min f (x), x ∈ Rn

xj+1 = xj + 𝛼jpj , 𝛼j =
(∇f (xj), pj)

(∇2f (xj)pj , pj)

pj = −∇f (xj) + 𝛽jpj−1

𝛽j =
||∇f (xj)||2
||∇f (xj−1||2

, 𝛽0 = 0.
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Simulation
Random data, n=50,m=10,K0=0
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Reduced gradient (RG)
Wolfe 1968

min
x ,y

f (x , y), g(x , y) = 0

Assume equation g(x , y) = 0 has the solution
x(y) for all y ∈ S . For F (y) := f (x(y), y) arrive
at unconstrained optimization

min F (y), y ∈ S

It is not hard to find the gradient of F (y) and
apply gradient descent; this is RG method. We are
in this framework with x = X , y = K . Thus
global convergence of RG can be validated.
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Extensions

Discrete-time case.
J. Bu, A. Mesbahi, M. Fazel, M. Mesbahi, ArXiv:1907.08921, 2019;
M.Fazel, R.Ge, S.Kakade, M.Mesbahi, ICML, 2018.
Finite horizon case, Large-scale problems,
Implementation issues.
Application for MPC.
Relatively-smooth functions
H.Lu, R.Freund, Y.Nesterov, ArXiv:1610.05708, 2017

H.Bauschke, J.Bolte, M.Teboulle, MOR, 2017.
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Part II
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Optimization via Low Order Controllers

ẋ(t) = A(k)x(t), A(k) = A0 +
m∑︁
i=1

kiAi ,

min

∫︁ ∞

0
x(t)TQx(t)dt +

m∑︁
i=1

𝛾ik
2
i

x(0) = x0,Ai ∈ Rn×n,Q ≻ 0, 𝛾i > 0.

Quadratic term is the penalty for excessive
control.
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Particular cases

Static output feedback

y = Cx , u = Ky , A(K ) = A + BKC

Decentralized control u = Kx , K ∈ L

PID controllers
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Optimization setup

f (k) := Tr (P) +
m∑︁
i=1

𝛾ik
2
i → min

k∈𝒮
,

A(k) = A0 +
m∑︁
i=1

kiAi .

A(k)⊤P + PA(k) = −Q,

S = {k : A(k) is Hurwitz},
k (0) ∈ S is known.
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Example 1
n = 3,m = 1

Several local minima
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Example 2
n = 3,m = 1

Several local minima. Non-connected S
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Decentralized control
H. Feng, J. Lavaei, ACC 2019

A(k) =

⎛⎜⎜⎜⎝
−1 2 + k1 0 0

−1 − k1 0 2 + k2 0
0 −1 − k2 0 2 + k3

0 0 −1 − k3 0

⎞⎟⎟⎟⎠ .

Stability region S for system of order n may have
2n−1 connectivity components.
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Properties of f (k) and S

Growth near boundary: f
(︀
k (j)

)︀
→ +∞ when⃦⃦

k (j)
⃦⃦
→ +∞ or k (j) → k ∈ 𝜕S .

Bounded S0 = {k ∈ S : f (k) ≤ f (k (0))}.
Number of connectivity components of S can
be large.
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Derivatives of f (k)

∇i f (k) = Tr(P i) + 2𝛾iki ,

∇2
ii f (k) = Tr(P ii) + 2𝛾i ,
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Derivatives of f (k)

∇i f (k) = Tr(P i) + 2𝛾iki ,

∇2
ii f (k) = Tr(P ii) + 2𝛾i ,

where P ,P i and P ii satisfy

A(k)⊤P + PA(k) = −Q,

A(k)⊤P i + P iA(k) = −
(︁
(Ai)

⊤ P + PAi

)︁
,

A(k)⊤P ii + P iiA(k) = −2
(︁
(Ai)

⊤ P i + P iAi

)︁
.
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Properties of f (k)

f (k) is L—smooth on S0 with f (k (0))-depending
constant L.
Unfortunately gradient domination is lacking.
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Algorithms

Gradient descent
Coordinate descent

Theorem: For smart versions of the algorithms
f (kj+1) ≤ f (kj), and ∇f (kj) → 0, j → ∞.
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Example - Low order controller
A.Krasovsky, 1967

n = 3,m = 2:

A(k) =

⎛⎝−1 0 −k1

k2 −1 0
0 1 0

⎞⎠ ,

𝛾1 = 𝛾2 = 1,

k (0) = (1, 1).
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Example - Simulation
Low-order controller vs LQR

Performance for low-order controller is worse, but
convergence is faster. 39 / 58



Example - Transient response
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Conclusions on low-order controllers

Fears of global optimization are exaggerated
Moreover, our goal is to improve the initial
controller, not to find the best one.
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Part III
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Extensions

Alternative objective functions

Nonlinear matrix inequalities
Linearization (=trust-region) methods
Systems with disturbances
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Peak effect

Discrete-time system, A is Schur stable matrix,

xk+1 = Axk , 𝜂(A) = max
|x0|=1

max
k

|xk | = max
k

||Ak ||

Upper bound: 𝜂(A) ≤ 𝜂upp(A) = ||Q||1/2, Q
being the solution of the SDP

min ||Q||, ATQA− Q ≻ 0, Q ≻ I

Lyapunov function V (x) = (Qx , x), invariant
ellipsoid V (x) ≤ V (x0).
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Reduction of peak

State feedback

xk+1 = Axk + Buk , uk = Kxk

Minimize 𝜂upp(A + BK ). Via change of variables
P = Q−1,Y = KP this can be converted to SDP
in P ,Y .
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Static output feedback

y = Cx , u = Ky . Then the problem cannot be
reduced to convex optimization and we arrive at
nonlinear matrix inequalities in variables P ,K , 𝛾

min 𝛾, (A + BKC )P(A + BKC )⊤ − P ≺ 0,

I 4 P 4 𝛾I

with an upper bound for peak
𝜂upp(A + BKC ) = 𝛾1/2.
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Trust region method

Linearize BMI at a point P ,K with
A(K ) = A + BKC :

A(K )(P + 𝛿P)A(K )⊤ + A(K )P(B 𝛿K C )⊤+

+(B 𝛿K C )PA(K )⊤ − P − 𝛿P ≺ 0

and solve SDP in 𝛿K , 𝛿P , 𝛾 with this LMI and
‖𝛿K‖ ≤ 𝜀, I 4 P + 𝛿P 4 𝛾I . Adjust 𝜀 to
guarantee solvability of LMIs and monotonicity of
𝛾.
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Example
Dowler 2013, Shcherbakov 2017

A =

⎛⎜⎜⎜⎝
20
21 2 0 0
0 40

41 2 0
0 0 60

61 2
0 0 0 80

81

⎞⎟⎟⎟⎠
A is stable: 𝜌(A) ≈ 0.988, ‖A‖ = 2.807,
𝜂(A) ≈ 1.5 × 105 at k* = 141,
𝜂upp(A) ≈ 1.7 × 105.
B = (0 0 0 1)⊤, C = (0 0 0 1), scalar K (we
vary a44).
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Example - simulation

K = −1.9874, 𝜂(A(K )) ≈ 2000 at k* = 75,
𝜂upp(A(K )) ≈ 2400

0 5 10 15
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

G
ai

n

Iterations

49 / 58



Validation

Rigorous algorithm and its validation remain open
problems. However the results of simulation are
promising.
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Problems with disturbances

ẋ = Ax + Bu + Dw , x(0) = x0

w(t) ∈ Rm is external disturbance. If it is
Gaussian, we are in the framework of LQG. In
contrast, we assume it non-random and bounded:

|w(t)| ≤ 1

Then integral quadratic objective has no sense,
and we deal with invariant ellipsoid Ex . We take
state feedback u = Kx and linear output z(t), the
goal is to minimize the bounding ellipsoid Ez for
the output as function of K .
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Invariant ellipsoid

ẋ = (A + BK )x + Dw , x(0) = x0

z = Cx + B2u = (C + B2K )x

Important: z includes u, e.g. z = [Cx , u]T .
Invariant ellipsoid for x : Ex = {x : xTP−1x ≤ 1},

x(0) ∈ Ex =⇒ x(t) ∈ Ex ∀t ≥ 0,

x(0) /∈ Ex =⇒ x(t) → Ex , t → ∞
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Optimization setup
Via special change of variables optimization
problem can be reduced to SDP S.Nazin, Polyak, Topunov

2007 . This trick does not work for output feedback
and low-order controllers, thus we deal with gain
K .
Optimization problem:

||(C + B2K )Q−1(C + B2K )T || → min

(A+BK )TQ+Q(A+BK )+𝛼Q+
1
𝛼
QDDTQ 4 0,

in the matrix variables Q = QT ≻ 0, K and
scalar 𝛼 > 0. 53 / 58



Linearization algorithm
Pshenichny 1970

Idea: linearize objective (L1) and matrix
inequalties (L2) at the current approximation
K ,Q, 𝛼 and solve the convex optimization
problem

L1 +
1
𝜀1
‖𝛿K‖2 +

1
𝜀2
|𝛿𝛼|2 → min

subject to LMIs

L2 4 0, Q + 𝛿Q ≻ 0, 𝛼 + 𝛿𝛼 > 0,

with variables 𝛿K , 𝛿Q, 𝛿𝛼 and step-sizes 𝜀1, 𝜀2.
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Example - double inverted pendulum

�
��
•✁
✁
✁✁
•

✛u

✛w

m1

ϕ1

m2

ϕ2

✲x

✻
y

l1

l2

𝜙̇1 = 𝜙3,

𝜙̇2 = 𝜙4,

𝜙̇3 = 2𝜙1 − 𝜙2 + u,

𝜙̇4 = −2𝜙1 + 2𝜙2 + w , |w(t)| ≤ 1.
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Example - objective function

State feedback:

u = k1𝜙1 + k2𝜙2 + k3𝜙3 + k4𝜙4

z =

(︂
𝜙1

u

)︂
,

Minimize trace of the bounding ellipsoid for z .
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Example - simulation
Solution via SDP̂︀K =

(︀
−24.9103 28.9948 −7.6200 19.8484

)︀
Linearization method after 20 iterations̃︀K =

(︀
−24.6968 28.6884 −7.5712 19.6210

)︀
.

Ellipsoids Ez :
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Conclusion

A bunch of nonconvex smooth optimization
problems related to static feedback in control

Rigorous validation of algorithms is given for
some cases, for other cases it remains an open
problem
The results of simulations are promising
Challenging field for research!
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