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Linear Quadratic Regulator

x(t) = Ax(t) + Bu(t), x(0) =xg
[ 0700+ o) R0t i

AeR™ BeR™ Q=0,R >0
A, B controllable.



Explicit solution
Kalman 1960

u(t) = —Kx(t), KeR™

Static linear feedback (vs open-loop control u(t))
K=R'B'X
X > 0 is the solution of ARE
ATX +XA—XBR'B™X+ Q=0



Feedback optimization

X(t) IAKX(t), Ax = A— BK
f(K) = /OO (x(£)"(Q + K" RK)x(t)] dt — min
0
Assume Ky € S is known,

S = {K : Axis Hurwitz stable}
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Main tools

o Lyapunov lemma: ATP+ PA= -G, G =0
has the solution P > 0 iff A is Hurwitz

o Bellman lemma: If A is Hurwitz, x = Ax, then
o x ' (t)Wx(t)dt = xg Xxo, where X = 0is
the solution of Lyapunov equation
ATX+XA=-W
o Averaging over x(0): Ex(0)x(0)" = &



LQR as matrix optimization problem

f(K)=Tr(X¥) — min

(A—BK)'X +X(A—BK)+K'RK+Q =0,
So={KeS:f(K)<f(Ky}

Goal: apply gradient-like methods for the
minimization of f(K).
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Example 1
n=1A=02B=Q=R=1,f(K)=K+1/K

S = R is unbounded, f(K) grows near the
boundary.
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Example 2
n=3m=135:k >0, kks > k

a s & 7 "

S is non-convex unbounded.
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Example 3
m=n—=2A=B=Q=R=]
S:kig+ koo <1+ kytkoy + kioko1, ki1 + koo < 2

— as

S is non-convex
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Properties of f(K) and S: Connectedness of S, Sy

Lemma: The sets S and Sy are connected.

Proof: change of variables P = X! reduces the
problem to a convex one, while stabilizing K have
the form K = R~'BT P~ this continuous image
of the convex set P > 0 is connected.

Change of variables allows to reduce LQR to SDP
H.Mohammadi, A Zare, M .Soltanolkotabi, M. Jovanovic, ArXiv:1912.11899,
2019. We avoid this trick.
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Properties of f(K) and S: f(K) is coercive

Lemma: f(Kj) — +oo for ||Kj|| = 400 or
Ki— KedS

It follows from the estimates of solutions of the
Lyapunov equation.
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Properties of f(K) and S: S is bounded

Lemma: Sy is bounded
It follows from the previous lemma.
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Properties of f(K) and S: f(K) is differentiable

Kalman 1960, Levine-Athans 1970

Vf(K)=2(RK—-B'X)Y,
AX + XAk + K'RK 4+ Q =0,
AkY + YA+ =0, Ax=(A- BK).

The minimizer K, exists, Vf(K,) = 0. This
implies ARE for K*.
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Properties of f(K) and S: f(K) is twice
differentiable

%VQf(K)[E, E|=(REY,E) —2(B"X'Y E)

ARX + XA+ MTE+ (MTE) =0
M=RK—-B'X
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Properties of f(K) and S: f(K) is L-smooth on Sy

Lemma: The objective f(K) is L-smooth on Sy
with f(Kjp)-dependent constant L.

L can be large for K close to the stability
boundary. In Example 1 f(K) = K+ 1/K and
f"(K) =2/K3. Thus f(K) is not L-smooth on S.
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Properties of f(K) and S: Gradient domination

Lemma: Condition LPL holds on Sp:

f(K) = £ < pl[VA(KIIP, 1> 0

Lemma: f(K) is strongly convex in the
neighborhood of K.
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Gradient flow

K(t) = -VF(K), KO =K €S

Theorem: Solution of ODE K(t) exists and
lim;,~ K(t) = K.

Need to solve two Lyapunov equations for every t.
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Gradient descent

Kinn = Kj = 3 VE(K))
Step-size choice
o Kjr1 € S
o Monotonicity

o Armijo-like condition
Such algorithms can be implemented due to
properties of f(K).
Theorem: lim;_,o K;j = K with linear rate.
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Alternative step-size for GD
min f(x), x € R"
IVF(x)II?
V£ (x)VE(x), VE(x;))
This is Newton method for 1D minimization. For

f(x) quadratic, the method coincides with
steepest descent.

Xit1 = Xi—Y VF(x;), U=

Theorem: For f(x) L-smooth and p-strongly
convex, the method locally converges, whereas its

damped version converges globally.

1 ~ 3
Example f(x) = £+ +x, xo > 0small, x; = 3x.
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A version of conjugate gradient

min f(x), x € R"

(VF(x), p;)
Xii1 = X; + a;p;, aj =
ST T (VR (), py)
pj = —VI(x) + Bipj1
V£(x)||?

RLZCES
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Simulation

Random data, n=50,m=10,K;=0
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Reduced gradient (RG)

Wolfe 1968

min f(x,y), g(x,y)=0
X,y

Y

Assume equation g(x,y) = 0 has the solution
x(y) forall y € S. For F(y) := f(x(y), y) arrive
at unconstrained optimization

min F(y), ye€S

It is not hard to find the gradient of F(y) and
apply gradient descent; this is RG method. We are
in this framework with x = X,y = K. Thus
global convergence of RG can be validated.
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Extensions

o Discrete-time case.
J. Bu, A. Mesbahi, M. Fazel, M. Mesbahi, ArXiv:1907.08921, 2019,
M.Fazel, R.Ge, S.Kakade, M.Mesbahi, ICML, 2018.

o Finite horizon case, Large-scale problems,
Implementation issues.

o Application for MPC.

o Relatively-smooth functions
H.Lu, R.Freund, Y.Nesterov, ArXiv:1610.05708, 2017
H.Bauschke, J.Bolte, M.Teboulle, MOR, 2017.

26 /58



Part |l

27 /58



Optimization via Low Order Controllers

(1) = AKX, AK) = Ao+ kA,

min /OO x(t)" Qx(t)dt + Z%k/?
0 i=1

X(O) = xp, Aj € Rnxn) Q> 0,7 >0.

Quadratic term is the penalty for excessive
control.
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Particular cases

o Static output feedback

y=C, u=Ky, AK)=A+ BKC
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Particular cases

o Static output feedback
y=C, u=Ky, AK)=A+ BKC

o Decentralized control u= Kx, K e L

e PID controllers
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Optimization setup

A(k)' P + PA(k) = —Q,
S = {k: A(k) is Hurwitz},
k© ¢ S is known.
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Example 1
n=3m=1

0.0 0.5 1.0 15 2.0 25 3.0

Several local minima
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Example 2
n=3m=1

250

200

50

Several local minima. Non-connected S
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Decentralized control
H. Feng, J. Lavaei, ACC 2019

—1 2+ ki 0 0

o —].—k1 0 2—|—k2 0
A(k) N 0 —1— ko 0 2 4 k3

0 0 —1—k3 O

Stability region S for system of order n may have
2"~1 connectivity components.
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Properties of f(k) and S

o Growth near boundary: f (k(j)) — 400 when
HkU)H — +oo or kW) — k € 9S.

o Bounded Sy = {k € S: f(k) < f(kO)}.
o Number of connectivity components of S can
be large.
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Derivatives of f(k)

Vif(k) = Tr(P') + 27k,
V2f(k) = Tr(P") + 2v;,
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Derivatives of f(k)

Vif(k) = Tr(P') + 2vk;,
V2f(k) = Tr(P") + 2v;,
where P, P' and P" satisfy
A(k)' P + PA(k) = —Q,
AK)TP + PIA(K) = — <(A,-)T P+ PA,-) ,
A(K)TP" + PTA(K) = —2 ((A) P+ P'A;)
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Properties of f(k)

f(k) is L—smooth on Sy with f(k(®)-depending
constant L.
Unfortunately gradient domination is lacking.
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Algorithms

o Gradient descent

o Coordinate descent

Theorem: For smart versions of the algorithms

f(kj+1) < f(kj), and Vf(kj) — O, J — 00.
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Example - Low order controller
A .Krasovsky, 1967
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Example - Simulation
Low-order controller vs LQR

n=3, m=2

0 10 20 30 40 50
iterations, j

Performance for low-order controller is worse, but
convergence is faster. 1058



Example - Transient response

2.0
15
1.0
0.5
0.0
-0.5
-1.0
=15

-2.0

— Xt
—— x{PY(t)

"""" X Lons(t)
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Conclusions on low-order controllers

o Fears of global optimization are exaggerated

o Moreover, our goal is to improve the initial
controller, not to find the best one.
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o Alternative objective functions
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Extensions

o Alternative objective functions
o Nonlinear matrix inequalities
o Linearization (=trust-region) methods

o Systems with disturbances
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Peak effect

Discrete-time system, A is Schur stable matrix,

X1 = Axk,  m(A) = max max |xx| = max HAk||
|X0|:1 k k

Upper bound: n(A) < nup(A) = [|Q[Y2 @
being the solution of the SDP

min||Q|l, ATQA—Q =0, Q>

Lyapunov function V(x) = (Qx, x), invariant
ellipsoid V(x) < V(xp).



Reduction of peak

State feedback
Xk11 = Axe + Buy,  up = Kxy

Minimize 1ypp(A + BK). Via change of variables

P = Q! Y = KP this can be converted to SDP
in P,Y.



Static output feedback

y = Cx, u = Ky. Then the problem cannot be
reduced to convex optimization and we arrive at
nonlinear matrix inequalities in variables P, K, v

miny, (A+ BKC)P(A+ BKC)' —P <0,

I <P <l

with an upper bound for peak
Nupp(A + BKC) = 412,
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Trust region method

Linearize BMI at a point P, K with
A(K) = A+ BKC:

A(K)(P + 0P)A(K)" + A(K)P(BSK C)T +
+(BOK C)PA(K)' — P — 6P <0

and solve SDP in 6K, 0P, ~ with this LMI and
10K|| <e, I X P+ 0P < vl. Adjust € to
guarantee solvability of LMIs and monotonicity of

y.



Example

Dowler 2013, Shcherbakov 2017

20

21

0
0
0

A:

2
40

41
0

0

0

2
60

61
0

RO o o

Ais stable: p(A) ~ O 988, ||A|| = 2.807,

n(A) =~ 1.5 x 10° at k* =
Nupp(A) = 1.7 x 10°.
B=(0001)7

vary a).

, C=

141,

(0 0 0 1), scalar K (we

48 /58



Example - simulation

K = —1.9874, n(A(K)) ~ 2000 at k* = 75,
up(A(K)) & 2400

Gain
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Validation

Rigorous algorithm and its validation remain open
problems. However the results of simulation are
promising.

50 /58



Problems with disturbances
x = Ax+ Bu+ Dw, x(0) = x
w(t) € R™ is external disturbance. If it is

Gaussian, we are in the framework of LQG. In
contrast, we assume it non-random and bounded:

w(t)] <1
Then integral quadratic objective has no sense,
and we deal with invariant ellipsoid E,. We take
state feedback u = Kx and linear output z(t), the

goal is to minimize the bounding ellipsoid E, for
the output as function of K.
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Invariant ellipsoid

x=(A+BK)x+ Dw, x(0)= x
z=Cx+ Bu = (C-FBzK)X

Important: z includes u, e.g. z = [Cx, u]".
Invariant ellipsoid for x: E, = {x : x" P71x < 1},

x(0) € Ex = x(t) € E, Vt >0,

x(0) € E, = x(t) = E,t — o0



Optimization setup
Via special change of variables optimization

problem can be reduced to SDP s.Nazin, Polyak, Topunov
2007 . This trick does not work for output feedback
and low-order controllers, thus we deal with gain

K.

Optimization problem:
1(C + BK)Q™H(C + BoK)' || — min
1
(A+BK)" Q+ Q(A+BK)+aQ+aQDDTQ <0,

in the matrix variables @ = Q" = 0. K and
scalar a > 0.
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Linearization algorithm
Pshenichny 1970

|dea: linearize objective (L1) and matrix
inequalties (L) at the current approximation
K, Q, o and solve the convex optimization
problem

1 1
Ly + —||6K|* + —|6al* — min
€1 )
subject to LMlIs
[0, Q+06Q >0, a+da>0,

with variables 0K, 0@, dc and step-sizes €1, &5.
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Example - double inverted pendulum
YA

Sbl - 9037
D2 = Qa,
P3 =201 — P2+ u,

Vg = —2(01 + 200 + w, ‘W(t)’ < 1.
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Example - objective function

State feedback:

u= k1g01 + k2g02 + k3g03 + k4g04

= (7).

Minimize trace of the bounding ellipsoid for z.
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Example - simulation
Solution via SDP

AN

K = (—24.9103 28.9948 —7.6200 19.8484)

Linearization method after 20 iterations

~

K = (—24.6968 28.6884 —7.5712 19.6210) .
Ellipsoids E,:
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Conclusion

o A bunch of nonconvex smooth optimization
problems related to static feedback in control

o Rigorous validation of algorithms is given for
some cases, for other cases it remains an open
problem

o The results of simulations are promising

o Challenging field for research!
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