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CLASSICAL NEWTON METHOD

Let ϕ : IRn → IR be C2-smooth around x̄ . The classical Newton method
to solve the nonlinear gradient system ∇ϕ(x) = 0 and optimization
problems constructs the iterative procedure

xk+1 := xk + dk for all k ∈ IN :=
{

1, 2, . . .
}

where x0 is a given starting point and where dk is a solution to the linear
system

−∇ϕ(xk) = ∇2ϕ(xk)dk , k = 0, 1, . . .

The classical Newton algorithm is well-defined (solvable for dk) and the
sequence of its iterates {xk} superlinearly (even quadratically) converges
to a solution x̄ if x0 is chosen sufficiently close to x̄ and the Hessian
∇2ϕ(x̄) is positive-definite

The are many nonsmooth extensions; see, e.g., the books by Facchinei
and Pang [FP03], Izmailov and Solodov [IS14], and Klatte and Kummer
[KK02]
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DAMPED NEWTON METHOD

In order to derive global convergence of Newton method, a common way
is to use a line search strategy and update the sequence {xk} by

xk+1 := xk + τkd
k for all k ∈ N :=

{
1, 2, . . .

}
where τk is chosen by the Armijo rule, i.e.

ϕ(xk+1) ≤ ϕ(xk) + στk〈∇ϕ(xk), dk〉

where σ ∈ (0, 1/2). The resulting algorithm using Newton directions with
the backtracking line search is known the damped Newton method
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MAJOR GOALS

In this talk we report recent results on the following topics:
• Design and justification of locally convergent generalized Newton
algorithms with superlinear convergence rates to find tilt-stable local
minimizers for C1,1 optimization problems that are based on second-order
subdifferentials and also on subgradient graphical derivatives
• Design and justification of such generalized Newton algorithms for
minimization of extended-real-valued prox-regular functions that cover
problems of constrained optimization
• Design and justification of superlinearly locally convergent algorithms
to solve subgradient systems 0 ∈ ∂ϕ(x) associated with
extended-real-valued prox-regular functions

4 / 44



MAJOR GOALS

• Design and justification of globally convergent algorithms of damped
Newton type based on second-order subdifferentials to solve C1,1

optimization problems
• Design and justification of globally convergent algorithms of damped
Newton type to solve convex composite optimization problems in the
unconstrained form

minimize ϕ(x) := f (x) + g(x)

where f is a convex quadratic function, and g is a lower semicontinuous
convex function which may be extended-real-valued
• Apply the obtained results to a major class of Lasso problems
• Conduct numerical implementations and comparison with some
first-order and second-order algorithms to solve the basic Lasso
problem
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GENERALIZED DIFFERENTIATION

See [M06,M18,Rock.-Wets98] for more details

Normal cone to Ω ⊂ IRn at x̄ ∈ Ω is

NΩ(x̄) :=
{
v ∈ IRn

∣∣ ∃ xk Ω→ x̄ , vk → v , lim sup
x

Ω→xk

〈vk , x − xk〉
‖x − xk‖

≤ 0
}

where x
Ω→ x̄ means that x → x̄ and x ∈ Ω

Coderivative of F : IRn ⇒ IRm at (x̄ , ȳ) ∈ gphF is

D∗F (x̄ , ȳ)(v) :=
{
u ∈ IRn

∣∣(u,−v) ∈ Ngph F (x̄ , ȳ)
}
, v ∈ IRm

Subdifferential of ϕ : IRn → IR := (−∞,∞] at x̄ ∈ domϕ is

∂ϕ(x̄) :=
{
v ∈ IRn

∣∣ (v ,−1) ∈ Nepiϕ

(
x̄ , ϕ(x̄)

)}
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GENERALIZED DIFFERENTIATION

Second-order subdifferential/generalized Hessian [M92] of ϕ at x̄ relative
to v̄ ∈ ∂ϕ(x̄) is

∂2ϕ(x̄ , x̄)(u) :=
(
D∗∂ϕ

)
(x̄ , v̄)(u), u ∈ IRn

If ϕ ∈ C2-smooth around x̄ , then

∂2ϕ(x̄ , v̄)(u) =
{
∇2ϕ(x̄)u

}
, u ∈ IRn

In general ∂2ϕ(x̄ , v̄)(u) enjoys full calculus and is computed in terms of
the given data for large classes of structural functions that appear in
variational analysis, optimization, and control theory; see the publications
by Colombo, Ding, Dontchev, Henrion, Hoang, Huy, Mordukhovich,
Nam, Outrata, Poliquin, Qui, Rockafellar, Römisch, Sarabi, Son, Sun,
Surowiec, Yao, Ye, Yen, Zhang, etc.
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PROX-REGULAR FUNCTIONS

Definition [Poliquin-Rock96, Rock-Wets98]

A mapping ϕ : IRn → IR is prox-regular at x̄ ∈ domϕ for v̄ ∈ ∂ϕ(x̄) if ϕ
is lower semicontinuous and there are ε > 0 and ρ ≥ 0 such that for all
x ∈ IBε(x̄) with ϕ(x) ≤ ϕ(x̄) + ε we have

ϕ(x) ≥ ϕ(u) + 〈v̄ , x − u〉 − ρ

2
‖x − u‖2 ∀ (u, v) ∈ (gph ∂ϕ) ∩ IBε(x̄ , v̄)

ϕ is subdifferentially continuous at x̄ for v̄ if the convergence
(xk , vk)→ (x̄ , v̄) with vk ∈ ∂ϕ(xk) yields ϕ(xk)→ ϕ(x̄). If both
properties hold, ϕ is continuously prox-regular. This is the major class in
second-order variational analysis
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TILT-STABLE LOCAL MINIMIZERS

Definition (Poliquin and Rockafellar, 1998)

Given ϕ : IRn → IR , a point x̄ ∈ domϕ is said to be a tilt-stable local
minimizer of ϕ if for some γ > 0 the argminimum mapping

Mγ : v 7→ argmin
{
ϕ(x)− 〈v , x〉

∣∣ x ∈ IBγ(x̄)
}

is single-valued and Lipschitz continuous on a neighborhood of v̄ = 0
with Mγ(v̄) = {x̄}

This notion is very well investigated and comprehensively characterized in
second-order variational analysis with many applications to constrained
optimization. In particular, tilt-stable local minimizers of prox-regular
functions ϕ : IRn → IR are characterized via second-order subdifferential
by [Poliquin-Rock98]

∂2ϕ(x̄ , 0) > 0
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TILT-STABLE LOCAL MINIMIZERS

There are other characterizations of tilt-stable minimizers for broad
classes of structural problems in constrained optimization and optimal
control. We refer to publications by Benko, Bonnans, Chieu,
Drusvyatskiy, Eberhard, Gfrerer, Hien, Lewis, Mordukhovich, Ng, Nghia,
Outrata, Poliquin, Qui, Rockafellar, Sarabi, Shapiro, Wachsmuth, Zhang,
Zheng, Zhu, etc.
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2ND-ORDER SUBDIFFER. ALGORITHM FOR C1,1 FUNCTIONS

Algorithm 1 (to find tilt-stable local minimizers) [M.-Sarabi20]

Step 0: Choose a starting point x0 and set k = 0

Step 1: If ∇ϕ(xk) = 0, stop the algorithm. Otherwise move to Step 2

Step 2: Choose dk ∈ IRn satisfying

−∇ϕ(xk) ∈ ∂2ϕ(xk)(dk) = ∂
〈
dk ,∇ϕ

〉
(xk)

Step 3: Set xk+1 given by

xk+1 := xk + dk , k = 0, 1, . . .

Step 4: Increase k by 1 and go to Step 1
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LOCAL SUPERLINEAR CONVERGENCE OF ALGORITHM 1

for tilt-stable local minimizers of C1,1 functions

Definition (Gfrerer and Outrata, 2019)

A mapping F : IRn ⇒ IRm is semismooth∗ at (x̄ , ȳ) ∈ gphF if whenever
(u, v) ∈ IRn × IRm we have the condition

〈u∗, u〉 = 〈v∗, v〉 for all (v∗, u∗) ∈ gphD∗F
(
(x̄ , ȳ); (u, v)

)

Theorem [M.-Sarabi20]

Let ϕ be a C1,1 function on a neighborhood of its tilt-stable local
minimizer x̄ . Then Algorithm 1 is well-defined around x̄ . If gradient
mapping ∇ϕ is semismooth∗ at x̄ , then there exist δ > 0 such that for
any starting point x0 ∈ IBδ(x̄) every sequence {xk} constructed by
Algorithm 1 converges to x̄ and the rate of convergence is superlinear
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C1,1 ALGORITHM BASED ON GRAPHICAL DERIVATIVES

for tilt-stable local minimizers of C1,1 functions

Consider the set

Q(x) :=
{
y ∈ IRn

∣∣−∇ϕ(x) ∈ (D∇ϕ)(x)(y)
}

Algorithm 2 [M.-Sarabi20]

Pick x0 ∈ IRn and set k := 0
Step 1: If ∇ϕ(xk) = 0, then stop
Step 2: Otherwise, select a direction dk ∈ Q(xk) and set xk+1 := xk − dk
Step 3: Let k ← k + 1 and then go to Step 1

Theorem

Let ϕ be a C1,1 function on a neighborhood of x̄ , which is a tilt-stable
local minimizer ϕ. Then there exists a neighborhood O of x̄ such that the
set-valued mapping Q(x) is nonempty and compact-valued for all x in O
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SECOND SUBDERIVATIVES

The second subderivative [Rock.88] of ϕ : IRn → IR at x̄ for v̄ is

d2ϕ(x̄ , v̄)(w) := lim inf
t↓0,w ′→w

∆2
tϕ(x̄ , v̄)(w ′)

where the second-order finite difference are

∆2
tϕ(x̄ , v̄)(w) :=

ϕ(x̄ + tw ′)− ϕ(x̄)− t〈v̄ ,w ′〉
1
2 t

2

ϕ is twice epi-differentiable at x̄ for v̄ if for every w ∈ IRn and tk ↓ 0
there is wk → w with ∆2

tkϕ(x̄ , v̄)(wk)→ d2ϕ(x̄ , v̄)(w).

The latter class includes fully amenable functions [Rock.-Wets98],
parabolically regular functions [Mohammadi-M.-Sarabi21], etc.
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SUBPROBLEMS ASSOCIATED WITH ALGORITHM 2

Subproblems for directions: At each iteration xk with vk := −∇ϕ(xk)
find w = Dk as a stationary point of

min ϕ(xk) + 〈vk ,w〉+ 1
2d

2ϕ(xk , vk)(w)

Constructive implementations of subproblems are given, in particular, for
the classes of extended linear-quadratic programs and for minimization of
augmented Lagrangians.

Theorem [M.-Sarabi20]

Let ϕ : IRn → IR be a C1,1 function around x̄ , where x̄ is its tilt-stable
local minimizer, and let ϕ be twice epi-differentiable at x for v = ∇ϕ(x).
Then for each large k ∈ IN the subproblem admits a unique optimal
solution

15 / 44



SUPERLINEAR CONVERGENCE OF ALGORITHM 2

Theorem [M.-Sarabi20]

Let ϕ : IRn → IR be a C1,1 function on a neighborhood of its tilt-stable
local minimizer x̄ , and let ∇ϕ be semismooth∗ at x̄ . Then there exists
δ > 0 such that for any starting point x0 ∈ IBδ(x̄) we have that every
sequence {xk} constructed by Algorithm 2 converges to x̄ and the rate of
convergence is superlinear
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ALGORITHMS FOR PROX-REGULAR FUNCTIONS

Recall that Moreau envelope of ϕ : IRn → IR

erϕ(x) := inf
w

{
ϕ(w) +

1

2r
‖w − x‖2

}
, r > 0

and the result from [Rock.-Wets88] that if ϕ is continuously prox-regular
at x̄ for v̄ , then its Moreau envelope for small r > 0 is a C1,1 function
with ∇erϕ(x̄ + r v̄) = v̄ .
Consider the unconstrained problem

minimize erϕ(x) subject to x ∈ IRn

Theorem [M.-Sarabi20]

Let ϕ : IRn → IR be continuously prox-regular at x̄ for v̄ = 0, where x̄ is a
tilt-stable local minimizer of ϕ. If ∂ϕ is semismooth∗ at (x̄ , v̄), then for
any small r > 0 there exists δ > 0 such that for each starting point
x0 ∈ IBδ(x̄) both Algorithms 1 and 2 and are well-defined, and every
sequence of iterates {xk} superlinearly converges to x̄
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APPLICATIONS TO CONSTRAINED OPTIMIZATION

Consider the constrained problem

minimize ψ(x) subject to f (x) ∈ Θ

where the functions ψ : IRn → IR and f : IRn → IRm are C2-smooth and
the set Θ ⊂ IRm is closed and convex. Denote

ϕ(x) := ψ(x) + δΩ(x) with Ω :=
{
x ∈ IRn

∣∣ f (x) ∈ Θ
}
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APPLICATIONS TO CONSTRAINED OPTIMIZATION

Algorithm 3 [M.-Sarabi20]

Set k := 0, and pick any r > 0
Step 1: If 0 ∈ ∂ϕ(xk), then stop.
Step 2: Otherwise, let vk = ∇(erϕ)(xk), select wk as a stationary point
of the subproblem

min
w∈IRn

〈vk ,w〉+ 1
2d

2ϕ(xk − rvk , vk)(w)

and then set dk := wk − rvk , xk+1 := xk + dk
Step 3: Let k ← k + 1 and then go to Step 1

In addition to the conditions of the previous type, the metric
subregularity of x 7→ f (x)−Θ is needed for superlinear convergence of
Algorithm 3
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NEWTON ALGORITHMS FOR SUBGRADIENT INCLUSIONS

The above locally convergent generalized Newton algorithms based in
2nd-order subdifferential are extended in [Khanh-M.-Phat20] to solve the
subgradient inclusions

0 ∈ ∂ϕ(x) where ϕ : IRn → IR

with the usage of the proximal mapping

Proxλϕ(x) := argmin

{
ϕ(y) +

1

2λ
‖y − x‖2

∣∣∣ y ∈ IRn

}
for prox-regular functions. Here is the main algorithm developed in
[Khanh-M.-Phat20]
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NEWTON ALGORITHMS FOR SUBGRADIENT INCLUSIONS

ALgorithm 4

Step 0: Pick any λ ∈ (0, r−1), set k := 0, choose a starting point x0 by

x0 ∈ Uλ := rge(I + λ∂ϕ).

Step 1: If 0 ∈ ∂ϕ(xk), then stop. Otherwise compute

v k :=
1

λ

(
xk − Proxλϕ(xk)

)
Step 2: Choose dk ∈ IRn such that

−v k ∈ ∂2ϕ(xk − λv k , v k)(λv k + dk)

Step 3: Compute xk+1 by
xk+1 := xk + dk .

Then increase k by 1 and go to Step 1

General conditions for well-posedness of Algorithm 4 are given in
[Khanh-M.-Phat20]
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LOCAL SUPERLINEAR CONVERGENCE OF ALGORITHM 4

Theorem [Khanh-M.-Phat20]

Let ϕ : IRn → IR be bounded from below by a quadratic function and
continuously prox-regular at x̄ for 0 ∈ ∂ϕ(x̄) with parameters r > 0.
Assume that ∂ϕ is semismooth∗ and metrically regular around (x̄ , 0).
Then there exists a neighborhood U of x̄ such that for all starting points
x0 ∈ U Algorithm 4 generates a sequence of iterates {xk}, which
converges superlinearly to the solution x̄ of the subgradient inclusion
0 ∈ ∂ϕ(x)

Applications to solving a Lasso problem are obtained in
[Khanh-M.-Phat20]
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DAMPED NEWTON ALGORITHM FOR C1,1 FUNCTIONS

Algorithm 5 [Khanh-M.-Phat-Tran21]

Step 0: Choose σ ∈ (0, 1/2), β ∈ (0, 1), a starting point x0 and set
k = 0

Step 1: If ∇ϕ(xk) = 0, stop the algorithm. Otherwise move to Step 2

Step 2: Choose dk ∈ IRn satisfying

−∇ϕ(xk) ∈ ∂
〈
dk ,∇ϕ

〉
(xk)

Step 3: Set τk = 1. If

ϕ(xk + τkd
k) > ϕ(xk) + στk〈∇ϕ(xk), dk〉

then set τk := βτk .

Step 4: Set xk+1 given by

xk+1 := xk + τkd
k , k = 0, 1, . . .

Step 5: Increase k by 1 and go to Step 1
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GLOBAL CONVERGENCE OF ALGORITHM 5

Theorem [Khanh-M.-Phat-Tran21]

Let ϕ : IRn → IR be a C1,1 function on IRn, and let x0 ∈ IRn. Denote

Ω :=
{
x ∈ IRn

∣∣ ϕ(x) ≤ ϕ(x0)
}

Suppose that Ω is bounded and that ∂2ϕ(x) is positive-definite for all
x ∈ Ω. Then the sequence {xk} constructed by Algorithm 5 globally
R-linearly converges to x̄ , which is a tilt-stable local minimizer of ϕ with
some modulus κ > 0. The rate of the global convergence is at least
Q-superlinear if either one of two following conditions holds:

(i) ∇ϕ is semismooth∗ at x̄ and σ ∈ (0, 1/(2`κ))where ` > 0 is a
Lipschitz constant of ϕ around x̄

(ii) ∇ϕ is semismooth at x̄
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GENERALIZED DAMPED NEWTON ALGORITHM
FOR CONVEX COMPOSITE OPTIMIZATION

Consider the following composite optimization problem

minimize ϕ(x) := f (x) + g(x), x ∈ IRn,

where g is an extended-real-valued lower semicontinuous convex function,
and where f is quadratic convex function given by

f (x) :=
1

2
〈Ax , x〉+ 〈b, x〉+ α

with A ∈ IRn×n being positive semidefinite, b ∈ IRn, and α ∈ IR
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GENERALIZED DAMPED NEWTON ALGORITHM
FOR CONVEX COMPOSITE OPTIMIZATION

Algorithm 6 [Khanh-M.-Phat-Tran21]

Step 0: Choose γ > 0 such that I − γA is positive definite, calculate
Q := (I − γA)−1, c := γQb, P := Q − I , and define

ψ(y) :=
1

2
〈Py , y〉+ 〈c, y〉+ γeγg(y)

Then choose an arbitrary starting point y 0 ∈ IRn and set k := 0

Step 1: If ∇ψ(y k) = 0, then stop. Otherwise compute

v k := Proxγg(y k)

Step 2: Choose dk ∈ IRn such that

1

γ
(−∇ψ(y k)− Pdk) ∈ ∂2g

(
v k ,

1

γ
(y k − v k)

)
Qdk +∇ψ(y k))
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GENERALIZED DAMPED NEWTON ALGORITHM
FOR CONVEX COMPOSITE OPTIMIZATION

Step 3: (line search) Set τk = 1. If

ψ(yk + τkd
k) > ψ(yk) + στk〈∇ψ(yk), dk〉

then set τk := βτk
Step 4: Compute yk+1 by

yk+1 := yk + τkd
k , k = 0, 1, . . .

Step 5: Increase k by 1 and go to Step 1
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GLOBAL CONVERGENCE OF ALGORITHM 6

Theorem [Khanh-M.-Phat-Tran21]

Suppose that A is positive-definite. Then we have

(i) Algorithm 6 is well-defined and the sequence of its iterates {yk}
globally converges at least R-linearly to ȳ .

(ii) x̄ := Qȳ + c is a tilt-stable local minimizer of ϕ, and it is the unique
solutionof this problem

The rate of convergence of {yk} is at least Q-superlinear if either one of
two following conditions holds:

(a) ∂g is semismooth∗ on IRn and σ ∈ (0, 1/(2`κ)), where
` := max{1, ‖Q‖} and κ := 1

λmin(P)

(b) g is twice epi-differentiable and the subgradient mapping ∂g is
semismooth∗ on IRn
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APPLICATIONS TO LASSO PROBLEMS

The basic version of this problem, known also as the `1-regularized least
square optimization problem, is formulated in [Tibshirani96] as
follows

minimize ϕ(x) :=
1

2
‖Ax − b‖2

2 + µ‖x‖1, x ∈ IRn

where A is an m × n matrix, µ > 0, b ∈ IRm with the standard norms
‖ · ‖1 and ‖ · ‖2. This problem is of the convex composite optimization
type with

f (x) =
1

2
‖Ax − b‖2 and g(x) = µ‖x‖1

In [Khanh-M.-Phat-Tran21] we compute ∂g , ∂2g , Proxγg(x) entirely via
the problem data and then run Algorithm 6 with providing numerical
experiments
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NUMERICAL EXPERIMENTS

The numerical experiments to solve the Lasso problem using the
generalized damped Newton algorithm (Algorithm 6), abbreviated as
GDNM, are conducted in [Khanh-M.-Phat-Tran21] on a desktop with
10th Gen Intel(R) Core(TM) i5-10400 processor (6-Core, 12M Cache,
2.9GHz to 4.3GHz) and 16GB memory. All the codes are written in
MATLAB 2016a. The data sets are collected from large scale regression
problems taken from UCI data repository [Lichman]. The results are
compared with the following

(i) Second-order method: the highly efficient semismooth Newton
augmented Lagrangian method (SSNAL) from [Li-Sun-Toh18]

(ii) First-order methods:

• alternating direction methods of multipliers (ADMM) [Boyd et al.,
2010]

• accelerated proximal gradient (APG) [Nesterov83]

• fast iterative shrinkage-thresholing algorithm (FISTA)
[Beck-Teboulle09]
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NUMERICAL EXPERIMENTS

TESTING DATA [Lichman]
Test ID Name m n

1 UCI-Relative location of CT slices on axial
axis Data Set

53500 385

2 UCI-YearPredictionMSD 515345 90
3 UCI-Abalone 4177 6
4 Random 1024 1024
5 Random 4096 4096
6 Random 16384 16384
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Overall results

Figure 1: GDNM with SSNAL - UCI tests
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Overall results

Figure 2: GDNM with SSNAL - random tests
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Overall results

Figure 3: GDNM with first order methods - UCI tests
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Overall results

Figure 4: GDNM with first order methods - random tests
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Results on Test 1

Figure 5: GDNM and ADMM

Figure 6: GDNM, ADMM from 0.6s Figure 7: GDMN, SSNAL, APG, FISTA
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Results on Test 2

Figure 8: GDNM and ADMM Figure 9: GDNM, SSNAL, APG, FISTA
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Results on Test 4

Figure 10: GDNM and ADMM
Figure 11: GDNM, SSNAL, APG,
FISTA
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Results on Test 5

Figure 12: GDNM and ADMM

Figure 13: GDNM, ADMM 13s Figure 14: GDMN, SSNAL, APG, FISTA
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Results on Test 6

Figure 15: GDNM and ADMM

Figure 16: GDNM, ADMM from 3900s Figure 17: GDMN, SSNAL, APG, FISTA
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