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Wasserstein distance

Fix a symmetric n x n matrix d = (dj;) with nonnegative entries
that satisfy djj =0 and dix < dj + dj forall /,/, k.

This turns the set [n] = {1,2,..., n} into a metric space.

Probability distributions on [n] are points in the simplex
A1 = {(Vl,...,l/,,) € Ry, : S vi= 1}.

Q: How to measure the distance between two distributions p,v € A,_17



Wasserstein distance

Fix a symmetric n x n matrix d = (dj;) with nonnegative entries
that satisfy djj =0 and dix < dj + dj forall /,/, k.

This turns the set [n] = {1,2,..., n} into a metric space.

Probability distributions on [n] are points in the simplex

Apy = {(v1,...,vn) € R%y : Yo vi= 1}.
Q: How to measure the distance between two distributions p,v € A,_17
A: Solve the linear programming problem

Maximize Y 7 ; (ui —vi)x; subject to
|xi —xj| < dj forall 1<i<j<n.

Optimal value Wy(p,v) is the Wasserstein Distance between y and v.
This turns the simplex A,_1 into a metric space.

— Optimal Transport



Unit Balls
The unit ball of the Wasserstein metric is the polytope
1 .
B = conv d—(e,-—ej)  1<i<j<n
r
Its polar dual is the feasible region of our linear program:

B* = {xeR"/R1 : |x—xj| < dj forallij}

Lipschitz polytope

polytrope
tropical polytope

alcoved polytope
of type A
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Fig. 3.2. The geometry of maximum likelihood estimation.

A discrete statistical model is any subset M C A,_1.

We assume that M compact and defined by polynomials.
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A discrete statistical model is any subset M C A,_1.
We assume that M compact and defined by polynomials.

The Wasserstein distance from the data  to the model M is

Wd(lu'aM) = JYE]I/C[ Wd(lu‘ay) - JQIJC( ?;aBé <:U‘_V7X>'

Computing this means solving a non-convex optimization problem.



Independence

() = (e o)

Independence models: M = { matrices or tensors of rank one }

@




2 X 2 matrices

We fix the Lo-metric d on the set of binary pairs [2] x [2]. Under our identification (lexicographic
order) of this state space with [4] = {1, 2, 3,4}, the resulting metric on Aj is given by the 4 x4 matrix

(2.3) d =

011 2
10 21
1201
2110

We now present the optimal value function and the solution function for this independence model.

Theorem 2.2. For the Lo-metric on the state space [2] X [2], the Wasserstein distance from a data
distribution @ € Ag to the 2-bit independence surface M is given by
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W, M) = 2VI0 = VE) e
1 pa — propusl/ (g1 + /tz)

1 pta — pops)/(pn =+ ps)

lppea = papesl /(2 + p1a)

1 ta — pops)/(prs =+ pa)

if i > s i > g e, N > s,
if o > pz, fH2 > g+ e, Rz 2> pe +
if 3 > o, i3 > pa s, N3 > s fla,
if g > gy la > po + e, /a2 pa A,
if i > pa, pl2 > ps, patpe > /i, et > \/H,
if g > gy py > pro, patps > i, it > /s,
if pa > g, p2 > pia, potpia > /s plata > \/Ha,
if g >, pi3 > o, patps >/l patis > /i3



Symmetric 2 X 2 matrices

Theorem 2.1. For the discrete metric and for the Li-metric on the state space [3] = {1,2, 3}, the
Wasserstein distance from a data distribution p € Ay to the Hardy- Weinberg curve M equals

[2¢/100 = 200 — o] if g — p3 >0 and py > i
Walp, M) = < 12/li3 — 23 — o] if i — s < 0 and pg > %,
uz—% if mg%anduggi.

The solution function Ay — M, p— v*(n) is given (with the same case distinction) by
(1, 2¢/101 = 2411, 1+ 1 — 2/jin),
V() = § (L+ ps — 24/113, 2/i3 — 2413, t3),
(13 1)-

(0,1,0)

=211 + 21 + pia =2\/1i3 + 2413 + p2

2V = 20— o | 2/ = 23 — 2

(1,0,0) (0,0,1)



Complexity of our Optimization Problem

The optimal value function and solution function are piecewise
algebraic. This suggests a division of our problem into two tasks:
first identify all pieces, then find a formula for each piece.

(1,0,0,0)

(0,1,0)

=21 + 21 + iz =213 + 243 + p12

21 = 2pn — pa | 2/f13 — 203 — fia

(1,0,0) (0,0,1)

(0,0,1,0)

Both tasks have a high degree of complexity.
The first task pertains to combinatorial complexity,
the second task to algebraic complexity. We address both.



Complexitv of our Optimization Problem

Combinatorial complexity: How many faces does the unit ball have?
Algebraic complexity: What is the degree of the critical variety?



Polytopes

Proposition

Fix the graph metric on a graph G
with vertex set [n]. The Lipschitz polytope is

B* = {xeR"/R1 : |x; — xj| <1 for every edge (i,j) of G }.

These are the facets when G is bipartite.



Polytopes

Proposition
Fix the graph metric on a graph G
with vertex set [n]. The Lipschitz polytope is

B* = {xeR"/R1 : |x; — xj| <1 for every edge (i,j) of G }.
These are the facets when G is bipartite.

Example

If G is the k-cube then the vertices of B* are in bijection with
the proper 3-colorings of G, with one vertex of fixed color. For
k=2,3,4,5,6, their number is 6, 38, 990, 395094, 33433683534.

We computed the unit balls B for small independence models.
Their combinatorics is an interesting research direction.



Algebraic Geometry ...
Fix a smooth model M, a linear functional ¢, and an affine

space L of dimension r, both in general position relative to M.

Theorem
The polar degree §, of M is the algebraic degree of the problem

Minimize the linear functional ¢ over the intersection L N M.



Algebraic Geometry ...

Fix a smooth model M, a linear functional ¢, and an affine
space L of dimension r, both in general position relative to M.

Theorem
The polar degree §, of M is the algebraic degree of the problem

Minimize the linear functional ¢ over the intersection L N M.

Recent work of Luca Sodomaco gives a (complicated) formula for
the polar degrees of all Segre-Veronese varieties. For (P!)* we get

Corollary
If M is the k-bit independence model then

6r1(M) = k_2k§+2—1)5<k;1__,5)(k—s)!zs(’s‘).

s=0

Chow rings, intersection theory, Segre classes, and all that



meets Numerical Mathematics
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7 — codim(M) | (2,3) | (2,4) ]| (2,5) ] (2,6) ] (3,3) ] (3,4) ] (3,5) | (3,6) ] (4,4) ] (4,5) ] (4,6)
0 3 4 5 6 6 10 15 21 20 35 56
1 4 6 8 10 12 24 40 60 60 120 210
2 3 4 5 6 12 27 48 75 84 190 360
3 6 16 30 48 68 176 360
4 3 6 10 15 36 105 228
5 12 40 90
6 4 10 20

TABLE 3. The polar degrees d,_1(M) of the independence model (my, ms).




(1,0,0,0)

(0.1,0)

(0,1,0,0)

Experiments

DT + 21 + iy 2T+ 20 + 1z

(0,0,0,1)
(1,0,0) (0,0,1) (0,0,1,0)

% of opt. solutions of dim(type) =i

M| d | f-vector 0 1 2 3 4 5 |6
2.2) | Ly | (8,12,6) 686 (314|0 |- |- |- |-
(2,2,2) | Lo | (24,192,652, 1062, 843, 306, 38) 0 |0 |01 [709/27515]0
(2.3) [ Lo | (18, 96,200, 174, 54) 0 [641[187]17.2/0 |- |-
(2,3) | Ly | (14,60, 102, 72, 18) 0 |[767]174/59 [0 |- |-
(3,3) | Lo | (36,468,2730,8010,12468,10200,3978,534) | 0 0 0.1 |583]28.2|4.6|8.8
(3,3) | L1 | (24,216,960, 2298, 3048, 2172, 736, 82) 0 0 0 65.7 1278 51|14
(2,4) | Lo | (32,336,1464, 3042, 3168, 1566, 282) 0 0.1 |55.1]14.6|258|44|0
(2,4) | Ly | (20, 144, 486, 846, 774, 342, 54) 0 |0 |7.3]165]82 [0 |0
(25) | L, | (6,12.8) 0 [983[17 |- |- |- |-
(25) | di | (12,24, 14) 02 96731 |- |- |- |-
(22.2) | Ly | (14,60,102,72,18) 0 |0 [676|275]49 |- |-
(29,2) | di | (30,120,210,180, 62) 0 0.2 |81.9]168|1.1 |- -
(35) | di | (30,120,210, 180, 62) 0 |02 83116007 [- |-
(24) | Ly | (8,24, 32,16) 0 |01 |983[16 |- |- |-
(2,) | di | (20,60, 70,30) 0 |0 969[31 |- |- |-

TABLE 6. Distribution of types among optimal solutions for a uniform sample of 1000 points.



Conclusion

When Statistics, Optimization and Algebraic Geometry interact ...

. cool opportunities arise for Algebraic Combinatorics.



