Wasserstein Distance to Independence Models

Bernd Sturmfels
MPI Leipzig and UC Berkeley

joint work with Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, and Lorenzo Venturello

Wasserstein distance

Fix a symmetric $n \times n$ matrix $d=\left(d_{i j}\right)$ with nonnegative entries that satisfy $d_{i i}=0$ and $d_{i k} \leq d_{i j}+d_{j k}$ for all i, j, k.

This turns the set $[n]=\{1,2, \ldots, n\}$ into a metric space.
Probability distributions on [n] are points in the simplex

$$
\Delta_{n-1}=\left\{\left(\nu_{1}, \ldots, \nu_{n}\right) \in \mathbb{R}_{\geq 0}^{n}: \sum_{i=1}^{n} \nu_{i}=1\right\}
$$

Q: How to measure the distance between two distributions $\mu, \nu \in \Delta_{n-1}$?

Wasserstein distance

Fix a symmetric $n \times n$ matrix $d=\left(d_{i j}\right)$ with nonnegative entries that satisfy $d_{i i}=0$ and $d_{i k} \leq d_{i j}+d_{j k}$ for all i, j, k.

This turns the set $[n]=\{1,2, \ldots, n\}$ into a metric space.
Probability distributions on [n] are points in the simplex

$$
\Delta_{n-1}=\left\{\left(\nu_{1}, \ldots, \nu_{n}\right) \in \mathbb{R}_{\geq 0}^{n}: \sum_{i=1}^{n} \nu_{i}=1\right\}
$$

Q: How to measure the distance between two distributions $\mu, \nu \in \Delta_{n-1}$?
A: Solve the linear programming problem

$$
\begin{aligned}
& \text { Maximize } \sum_{i=1}^{n}\left(\mu_{i}-\nu_{i}\right) x_{i} \text { subject to } \\
& \qquad\left|x_{i}-x_{j}\right| \leq d_{i j} \text { for all } 1 \leq i<j \leq n
\end{aligned}
$$

Optimal value $W_{d}(\mu, \nu)$ is the Wasserstein Distance between μ and ν.
This turns the simplex Δ_{n-1} into a metric space.
\longrightarrow Optimal Transport

Unit Balls

The unit ball of the Wasserstein metric is the polytope

$$
B=\operatorname{conv}\left\{\frac{1}{d_{i j}}\left(e_{i}-e_{j}\right): \quad 1 \leq i<j \leq n\right\}
$$

Its polar dual is the feasible region of our linear program:

$$
B^{*}=\left\{x \in \mathbb{R}^{n} / \mathbb{R} \mathbf{1}:\left|x_{i}-x_{j}\right| \leq d_{i j} \text { for all } i, j\right\}
$$

Lipschitz polytope polytrope
tropical polytope
alcoved polytope of type A

Statistics

Fig. 3.2. The geometry of maximum likelihood estimation.

A discrete statistical model is any subset $\mathcal{M} \subset \Delta_{n-1}$.
We assume that \mathcal{M} compact and defined by polynomials.

Statistics

Fig. 3.2. The geometry of maximum likelihood estimation.

A discrete statistical model is any subset $\mathcal{M} \subset \Delta_{n-1}$.
We assume that \mathcal{M} compact and defined by polynomials.

The Wasserstein distance from the data μ to the model \mathcal{M} is

$$
W_{d}(\mu, \mathcal{M}):=\min _{\nu \in \mathcal{M}} W_{d}(\mu, \nu)=\min _{\nu \in \mathcal{M}} \max _{x \in B^{*}}\langle\mu-\nu, x\rangle .
$$

Computing this means solving a non-convex optimization problem.

Independence

$$
\left(\begin{array}{ll}
\nu_{1} & \nu_{2} \\
\nu_{3} & \nu_{4}
\end{array}\right)=\left(\begin{array}{cc}
p q & p(1-q) \\
(1-p) q & (1-p)(1-q)
\end{array}\right)
$$

Independence models: $\mathcal{M}=\{$ matrices or tensors of rank one $\}$

2×2 matrices

We fix the L_{0}-metric d on the set of binary pairs [2] $\times[2]$. Under our identification (lexicographic order) of this state space with $[4]=\{1,2,3,4\}$, the resulting metric on Δ_{3} is given by the 4×4 matrix

$$
d=\left(\begin{array}{llll}
0 & 1 & 1 & 2 \tag{2.3}\\
1 & 0 & 2 & 1 \\
1 & 2 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}\right)
$$

We now present the optimal value function and the solution function for this independence model.
Theorem 2.2. For the L_{0}-metric on the state space [2] $\times[2]$, the Wasserstein distance from a data distribution $\mu \in \Delta_{3}$ to the 2 -bit independence surface \mathcal{M} is given by

$$
W_{d}(\mu, \mathcal{M})= \begin{cases}2 \sqrt{\mu_{1}}\left(1-\sqrt{\mu_{1}}\right)-\mu_{2}-\mu_{3} & \text { if } \mu_{1} \geq \mu_{4}, \sqrt{\mu_{1}} \geq \mu_{1}+\mu_{2}, \sqrt{\mu_{1}} \geq \mu_{1}+\mu_{3} \\ 2 \sqrt{\mu_{2}}\left(1-\sqrt{\mu_{2}}\right)-\mu_{1}-\mu_{4} & \text { if } \mu_{2} \geq \mu_{3}, \sqrt{\mu_{2}} \geq \mu_{1}+\mu_{2}, \sqrt{\mu_{2}} \geq \mu_{2}+\mu_{4} \\ 2 \sqrt{\mu_{3}}\left(1-\sqrt{\mu_{3}}\right)-\mu_{1}-\mu_{4} & \text { if } \mu_{3} \geq \mu_{2}, \sqrt{\mu_{3}} \geq \mu_{1}+\mu_{3}, \sqrt{\mu_{3}} \geq \mu_{3}+\mu_{4} \\ 2 \sqrt{\mu_{4}}\left(1-\sqrt{\mu_{4}}\right)-\mu_{2}-\mu_{3} & \text { if } \mu_{4} \geq \mu_{1}, \sqrt{\mu_{4}} \geq \mu_{2}+\mu_{4}, \sqrt{\mu_{4}} \geq \mu_{3}+\mu_{4} \\ \left|\mu_{1} \mu_{4}-\mu_{2} \mu_{3}\right| /\left(\mu_{1}+\mu_{2}\right) & \text { if } \mu_{1} \geq \mu_{4}, \mu_{2} \geq \mu_{3}, \mu_{1}+\mu_{2} \geq \sqrt{\mu_{1}}, \mu_{1}+\mu_{2} \geq \sqrt{\mu_{2}} \\ \left|\mu_{1} \mu_{4}-\mu_{2} \mu_{3}\right| /\left(\mu_{1}+\mu_{3}\right) & \text { if } \mu_{1} \geq \mu_{4}, \mu_{3} \geq \mu_{2}, \mu_{1}+\mu_{3} \geq \sqrt{\mu_{1}}, \mu_{1}+\mu_{3} \geq \sqrt{\mu_{3}} \\ \left|\mu_{1} \mu_{4}-\mu_{2} \mu_{3}\right| /\left(\mu_{2}+\mu_{4}\right) & \text { if } \mu_{4} \geq \mu_{1}, \mu_{2} \geq \mu_{3}, \mu_{2}+\mu_{4} \geq \sqrt{\mu_{4}}, \mu_{2}+\mu_{4} \geq \sqrt{\mu_{2}} \\ \left|\mu_{1} \mu_{4}-\mu_{2} \mu_{3}\right| /\left(\mu_{3}+\mu_{4}\right) & \text { if } \mu_{4} \geq \mu_{1}, \mu_{3} \geq \mu_{2}, \mu_{3}+\mu_{4} \geq \sqrt{\mu_{4}}, \mu_{3}+\mu_{4} \geq \sqrt{\mu_{3}}\end{cases}
$$

Symmetric 2×2 matrices

Theorem 2.1. For the discrete metric and for the L_{1}-metric on the state space $[3]=\{1,2,3\}$, the Wasserstein distance from a data distribution $\mu \in \Delta_{2}$ to the Hardy-Weinberg curve \mathcal{M} equals

$$
W_{d}(\mu, \mathcal{M})=\left\{\begin{array}{lll}
\left|2 \sqrt{\mu_{1}}-2 \mu_{1}-\mu_{2}\right| & \text { if } & \mu_{1}-\mu_{3} \geq 0 \text { and } \mu_{1} \geq \frac{1}{4}, \\
\left|2 \sqrt{\mu_{3}}-2 \mu_{3}-\mu_{2}\right| & \text { if } & \mu_{1}-\mu_{3} \leq 0 \text { and } \mu_{3} \geq \frac{1}{4}, \\
\mu_{2}-\frac{1}{2} & \text { if } \mu_{1} \leq \frac{1}{4} \text { and } \mu_{3} \leq \frac{1}{4} .
\end{array}\right.
$$

The solution function $\Delta_{2} \rightarrow \mathcal{M}, \mu \mapsto \nu^{*}(\mu)$ is given (with the same case distinction) by

$$
\nu^{*}(\mu)=\left\{\begin{array}{l}
\left(\mu_{1}, 2 \sqrt{\mu_{1}}-2 \mu_{1}, 1+\mu_{1}-2 \sqrt{\mu_{1}}\right), \tag{0,1,0}\\
\left(1+\mu_{3}-2 \sqrt{\mu_{3}}, 2 \sqrt{\mu_{3}}-2 \mu_{3}, \mu_{3}\right), \\
\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right) .
\end{array}\right.
$$

Complexity of our Optimization Problem

The optimal value function and solution function are piecewise algebraic. This suggests a division of our problem into two tasks: first identify all pieces, then find a formula for each piece.

Both tasks have a high degree of complexity.
The first task pertains to combinatorial complexity, the second task to algebraic complexity.

We address both.

Complexitv of our Ontimization Problem

Combinatorial complexity: How many faces does the unit ball have? Algebraic complexity: What is the degree of the critical variety?

Polytopes and their f-vectors

Proposition

Fix the graph metric on a graph G
 with vertex set $[n]$. The Lipschitz polytope is

$$
B^{*}=\left\{x \in \mathbb{R}^{n} / \mathbb{R} \mathbf{1}:\left|x_{i}-x_{j}\right| \leq 1 \text { for every edge }(i, j) \text { of } G\right\}
$$

These are the facets when G is bipartite.

Polytopes and their f-vectors

Proposition

Fix the graph metric on a graph G
 with vertex set $[n]$. The Lipschitz polytope is

$$
B^{*}=\left\{x \in \mathbb{R}^{n} / \mathbb{R} \mathbf{1}:\left|x_{i}-x_{j}\right| \leq 1 \text { for every edge }(i, j) \text { of } G\right\}
$$

These are the facets when G is bipartite.

Example

If G is the k-cube then the vertices of B^{*} are in bijection with the proper 3 -colorings of G, with one vertex of fixed color. For $k=2,3,4,5,6$, their number is $6,38,990,395094,33433683534$.

We computed the unit balls B for small independence models. Their combinatorics is an interesting research direction.

Algebraic Geometry ...

Fix a smooth model \mathcal{M}, a linear functional ℓ, and an affine space L of dimension r, both in general position relative to \mathcal{M}.

Theorem
The polar degree δ_{r} of \mathcal{M} is the algebraic degree of the problem Minimize the linear functional ℓ over the intersection $L \cap \mathcal{M}$.

Algebraic Geometry ...

Fix a smooth model \mathcal{M}, a linear functional ℓ, and an affine space L of dimension r, both in general position relative to \mathcal{M}.

Theorem
The polar degree δ_{r} of \mathcal{M} is the algebraic degree of the problem Minimize the linear functional ℓ over the intersection $L \cap \mathcal{M}$.

Recent work of Luca Sodomaco gives a (complicated) formula for the polar degrees of all Segre-Veronese varieties. For $\left(\mathbb{P}^{1}\right)^{k}$ we get

Corollary
If \mathcal{M} is the k-bit independence model then

$$
\delta_{r-1}(\mathcal{M})=\sum_{s=0}^{k-2^{k}+1+r}(-1)^{s}\binom{k+1-s}{2^{k}-r}(k-s)!2^{s}\binom{k}{s} .
$$

... meets Numerical Mathematics

$r-\operatorname{codim}(\mathcal{M})$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$	$(4,4)$	$(4,5)$	$(4,6)$
0	3	4	5	6	6	10	15	21	20	35	56
1	4	6	8	10	12	24	40	60	60	120	210
2	3	4	5	6	12	27	48	75	84	190	360
3					6	16	30	48	68	176	360
4					3	6	10	15	36	105	228
5									12	40	90
6									4	10	20

Table 3. The polar degrees $\delta_{r-1}(\mathcal{M})$ of the independence model $\left(m_{1}, m_{2}\right)$.

Experiments

$(0,1,0)$

			\% of opt. solutions of $\operatorname{dim}($ type) $=i$						
\mathcal{M}	d	f-vector	0	1	2	3	4	5	6
$(2,2)$	L_{0}	$(8,12,6)$	68.6	31.4	0	-	-	-	-
$(2,2,2)$	L_{0}	$(24,192,652,1062,848,306,38)$	0	0	0.1	70.9	27.5	1.5	0
$(2,3)$	L_{0}	$(18,96,200,174,54)$	0	64.1	18.7	17.2	0	-	-
$(2,3)$	L_{1}	$(14,60,102,72,18)$	0	76.7	17.4	5.9	0	-	-
$(3,3)$	L_{0}	$(36,468,2730,8010,12468,10200,3978,534)$	0	0	0.1	58.3	28.2	4.6	8.8
$(3,3)$	L_{1}	(24, 216, 960, 2298, 3048, 2172, 736, 82)	0	0	0	65.7	27.8	5.1	1.4
$(2,4)$	L_{0}	(32, 336, 1464, 3042, 3168, 1566, 282)	0	0.1	55.1	14.6	25.8	4.4	0
$(2,4)$	L_{1}	$(20,144,486,846,774,342,54)$	0	0	75.3	16.5	8.2	0	0
$\left(2{ }_{3}\right)$	L_{1}	$(6,12,8)$	0	98.3	1.7	-	-	-	-
$\left(2{ }_{3}\right)$	di	$(12,24,14)$	0.2	96.7	3.1	-	-	-	-
$(2,2)$	L_{1}	(14,60,102,72,18)	0	0	67.6	27.5	4.9	-	-
$\left(2_{2}, 2\right)$	di	(30, 120, 210, 180, 62)	0	0.2	81.9	16.8	1.1	-	-
$\left(3_{2}\right)$	di	(30, 120, 210, 180, 62)	0	0.2	83.1	16.0	0.7	-	-
(24)	L_{1}	$(8,24,32,16)$	0	0.1	98.3	1.6	-	-	-
(24)	di	(20,60, 70,30)	0	0	96.9	3.1	-	-	-

TABLE 6. Distribution of types among optimal solutions for a uniform sample of 1000 points.

Conclusion

When Statistics, Optimization and Algebraic Geometry interact ...

... cool opportunities arise for Algebraic Combinatorics.

