Wasserstein Distance to Independence Models

joint work with Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, and Lorenzo Venturello

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Wasserstein distance

Fix a symmetric $n \times n$ matrix $d = (d_{ij})$ with nonnegative entries that satisfy $d_{ii} = 0$ and $d_{ik} \le d_{ij} + d_{jk}$ for all i, j, k.

This turns the set $[n] = \{1, 2, ..., n\}$ into a metric space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Probability distributions on [n] are points in the simplex

$$\Delta_{n-1} = \left\{ (\nu_1, \ldots, \nu_n) \in \mathbb{R}^n_{\geq 0} : \sum_{i=1}^n \nu_i = 1 \right\}.$$

Q: How to measure the distance between two distributions $\mu, \nu \in \Delta_{n-1}$?

Wasserstein distance

Fix a symmetric $n \times n$ matrix $d = (d_{ij})$ with nonnegative entries that satisfy $d_{ii} = 0$ and $d_{ik} \le d_{ij} + d_{jk}$ for all i, j, k.

This turns the set $[n] = \{1, 2, ..., n\}$ into a metric space.

Probability distributions on [n] are points in the simplex

$$\Delta_{n-1} = \left\{ (\nu_1, \ldots, \nu_n) \in \mathbb{R}^n_{\geq 0} : \sum_{i=1}^n \nu_i = 1 \right\}.$$

Q: How to measure the distance between two distributions $\mu, \nu \in \Delta_{n-1}$?

A: Solve the linear programming problem

$$\begin{array}{ll} \text{Maximize} \quad \sum_{i=1}^n \left(\mu_i - \nu_i \right) x_i \quad \text{subject to} \\ |x_i - x_j| \ \leq \ d_{ij} \quad \text{for all} \quad 1 \leq i < j \leq n. \end{array}$$

Optimal value $W_d(\mu, \nu)$ is the *Wasserstein Distance* between μ and ν .

This turns the simplex Δ_{n-1} into a metric space.

 \rightarrow Optimal Transport

Unit Balls

The unit ball of the Wasserstein metric is the polytope

$$B = \operatorname{conv} \left\{ \frac{1}{d_{ij}} (e_i - e_j) : 1 \le i < j \le n \right\}$$

Its polar dual is the feasible region of our linear program:

$$B^* \;=\; \left\{\, x \in \mathbb{R}^n/\mathbb{R}\mathbf{1} \;:\; |x_i - x_j| \,\leq\, d_{ij} \;\; ext{for all } i,j \,
ight\}$$

Lipschitz polytope

polytrope *tropical polytope*

alcoved polytope of type A

Statistics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Fig. 3.2. The geometry of maximum likelihood estimation.

A *discrete statistical model* is any subset $\mathcal{M} \subset \Delta_{n-1}$.

We assume that \mathcal{M} compact and defined by polynomials.

Statistics

Fig. 3.2. The geometry of maximum likelihood estimation.

A discrete statistical model is any subset $\mathcal{M} \subset \Delta_{n-1}$. We assume that \mathcal{M} compact and defined by polynomials.

The *Wasserstein distance* from the data μ to the model \mathcal{M} is

$$W_d(\mu, \mathcal{M}) := \min_{\nu \in \mathcal{M}} W_d(\mu, \nu) = \min_{\nu \in \mathcal{M}} \max_{x \in B^*} \langle \mu - \nu, x \rangle.$$

Computing this means solving a non-convex optimization problem.

Independence

$$egin{pmatrix}
u_1 &
u_2 \\

u_3 &
u_4 \end{pmatrix} = egin{pmatrix}
pq & p(1-q) \\
(1-p)q & (1-p)(1-q) \end{pmatrix}$$

Independence models: $\mathcal{M} = \{ \text{ matrices or tensors of rank one } \}$

2×2 matrices

We fix the L_0 -metric d on the set of binary pairs $[2] \times [2]$. Under our identification (lexicographic order) of this state space with $[4] = \{1, 2, 3, 4\}$, the resulting metric on Δ_3 is given by the 4×4 matrix

(2.3)
$$d = \begin{pmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$

We now present the optimal value function and the solution function for this independence model.

Theorem 2.2. For the L_0 -metric on the state space $[2] \times [2]$, the Wasserstein distance from a data distribution $\mu \in \Delta_3$ to the 2-bit independence surface \mathcal{M} is given by

$$W_{d}(\mu,\mathcal{M}) \ = \begin{cases} 2\sqrt{\mu_{1}}(1-\sqrt{\mu_{1}})-\mu_{2}-\mu_{3} & if \, \mu_{1} \geq \mu_{4} \,, \, \sqrt{\mu_{1}} \geq \mu_{1}+\mu_{2} \,, \, \sqrt{\mu_{1}} \geq \mu_{1}+\mu_{3} \,, \\ 2\sqrt{\mu_{2}}(1-\sqrt{\mu_{2}})-\mu_{1}-\mu_{4} & if \, \mu_{2} \geq \mu_{3} \,, \, \sqrt{\mu_{2}} \geq \mu_{1}+\mu_{2} \,, \, \sqrt{\mu_{2}} \geq \mu_{2}+\mu_{4} \,, \\ 2\sqrt{\mu_{3}}(1-\sqrt{\mu_{3}})-\mu_{1}-\mu_{4} & if \, \mu_{3} \geq \mu_{2} \,, \, \sqrt{\mu_{3}} \geq \mu_{1}+\mu_{3} \,, \, \sqrt{\mu_{3}} \geq \mu_{3}+\mu_{4} \,, \\ 2\sqrt{\mu_{4}}(1-\sqrt{\mu_{4}})-\mu_{2}-\mu_{3} & if \, \mu_{4} \geq \mu_{1} \,, \, \sqrt{\mu_{4}} \geq \mu_{2}+\mu_{4} \,, \, \sqrt{\mu_{4}} \geq \mu_{3}+\mu_{4} \,, \\ |\mu_{1}\mu_{4}-\mu_{2}\mu_{3}|/(\mu_{1}+\mu_{2}) & if \, \mu_{1} \geq \mu_{4} \,, \, \mu_{2} \geq \mu_{3} \,, \, \mu_{1}+\mu_{2} \geq \sqrt{\mu_{1}} \,, \, \mu_{1}+\mu_{2} \geq \sqrt{\mu_{2}} \,, \\ |\mu_{1}\mu_{4}-\mu_{2}\mu_{3}|/(\mu_{1}+\mu_{3}) & if \, \mu_{1} \geq \mu_{4} \,, \, \mu_{3} \geq \mu_{2} \,, \, \mu_{1}+\mu_{3} \geq \sqrt{\mu_{1}} \,, \, \mu_{1}+\mu_{3} \geq \sqrt{\mu_{3}} \,, \\ |\mu_{1}\mu_{4}-\mu_{2}\mu_{3}|/(\mu_{2}+\mu_{4}) & if \, \mu_{4} \geq \mu_{1} \,, \, \mu_{2} \geq \mu_{3} \,, \, \mu_{2}+\mu_{4} \geq \sqrt{\mu_{4}} \,, \, \mu_{2}+\mu_{4} \geq \sqrt{\mu_{2}} \,, \\ |\mu_{1}\mu_{4}-\mu_{2}\mu_{3}|/(\mu_{3}+\mu_{4}) & if \, \mu_{4} \geq \mu_{1} \,, \, \mu_{3} \geq \mu_{2} \,, \, \mu_{3}+\mu_{4} \geq \sqrt{\mu_{4}} \,, \, \mu_{3}+\mu_{4} \geq \sqrt{\mu_{3}} \,. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Symmetric 2×2 matrices

Theorem 2.1. For the discrete metric and for the L_1 -metric on the state space $[3] = \{1, 2, 3\}$, the Wasserstein distance from a data distribution $\mu \in \Delta_2$ to the Hardy-Weinberg curve \mathcal{M} equals

$$W_d(\mu, \mathcal{M}) = \begin{cases} |2\sqrt{\mu_1} - 2\mu_1 - \mu_2| & \text{if} \quad \mu_1 - \mu_3 \ge 0 \text{ and } \mu_1 \ge \frac{1}{4}, \\ |2\sqrt{\mu_3} - 2\mu_3 - \mu_2| & \text{if} \quad \mu_1 - \mu_3 \le 0 \text{ and } \mu_3 \ge \frac{1}{4}, \\ \mu_2 - \frac{1}{2} & \text{if} \quad \mu_1 \le \frac{1}{4} \text{ and } \mu_3 \le \frac{1}{4}. \end{cases}$$

The solution function $\Delta_2 \to \mathcal{M}, \mu \mapsto \nu^*(\mu)$ is given (with the same case distinction) by

$$\nu^{*}(\mu) = \begin{cases} (\mu_{1}, 2\sqrt{\mu_{1}} - 2\mu_{1}, 1 + \mu_{1} - 2\sqrt{\mu_{1}}), \\ (1 + \mu_{3} - 2\sqrt{\mu_{3}}, 2\sqrt{\mu_{3}} - 2\mu_{3}, \mu_{3}), \\ (\frac{1}{4}, \frac{1}{2}, \frac{1}{4}). \end{cases}$$

(0, 1, 0)

Complexity of our Optimization Problem

The optimal value function and solution function are piecewise algebraic. This suggests a division of our problem into **two tasks**: first identify all pieces, then find a formula for each piece.

Both tasks have a high degree of complexity.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The **first task** pertains to *combinatorial complexity*, the **second task** to *algebraic complexity*. We address both.

Complexity of our Optimization Problem

Combinatorial complexity: How many faces does the unit ball have? Algebraic complexity: What is the degree of the critical variety?

Polytopes and their f-vectors

Proposition

Fix the graph metric on a graph G with vertex set [n]. The Lipschitz polytope is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $B^* = \{ x \in \mathbb{R}^n / \mathbb{R}\mathbf{1} : |x_i - x_j| \le 1 \text{ for every edge } (i,j) \text{ of } G \}.$

These are the facets when G is bipartite.

Polytopes and their f-vectors

Proposition

Fix the graph metric on a graph G with vertex set [n]. The Lipschitz polytope is

 $B^* = \{ x \in \mathbb{R}^n / \mathbb{R}\mathbf{1} : |x_i - x_j| \le 1 \text{ for every edge } (i,j) \text{ of } G \}.$

These are the facets when G is bipartite.

Example

If G is the k-cube then the vertices of B^* are in bijection with the proper 3-colorings of G, with one vertex of fixed color. For k = 2, 3, 4, 5, 6, their number is 6, 38, 990, 395094, 33433683534.

We computed the unit balls B for small independence models. Their combinatorics is an interesting research direction.

Algebraic Geometry ...

Fix a smooth model \mathcal{M} , a linear functional ℓ , and an affine space L of dimension r, both in general position relative to \mathcal{M} .

Theorem

The polar degree δ_r of \mathcal{M} is the algebraic degree of the problem

Minimize the linear functional ℓ over the intersection $L \cap \mathcal{M}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic Geometry ...

Fix a smooth model \mathcal{M} , a linear functional ℓ , and an affine space L of dimension r, both in general position relative to \mathcal{M} .

Theorem

The polar degree δ_r of \mathcal{M} is the algebraic degree of the problem Minimize the linear functional ℓ over the intersection $L \cap \mathcal{M}$.

Recent work of Luca Sodomaco gives a (complicated) formula for the polar degrees of all Segre-Veronese varieties. For $(\mathbb{P}^1)^k$ we get

Corollary

If \mathcal{M} is the k-bit independence model then

$$\delta_{r-1}(\mathcal{M}) = \sum_{s=0}^{k-2^{k}+1+r} (-1)^{s} \binom{k+1-s}{2^{k}-r} (k-s)! \, 2^{s} \binom{k}{s}.$$

... meets Numerical Mathematics

$r - \operatorname{codim}(\mathcal{M})$	(2,3)	(2, 4)	(2,5)	(2, 6)	(3, 3)	(3, 4)	(3, 5)	(3, 6)	(4, 4)	(4, 5)	(4, 6)
0	3	4	5	6	6	10	15	21	20	35	56
1	4	6	8	10	12	24	40	60	60	120	210
2	3	4	5	6	12	27	48	75	84	190	360
3					6	16	30	48	68	176	360
4					3	6	10	15	36	105	228
5									12	40	90
6									4	10	20

TABLE 3. The polar degrees $\delta_{r-1}(\mathcal{M})$ of the independence model (m_1, m_2) .

Experiments

			% of opt. solutions of $\dim(type) = i$						
\mathcal{M}	d	<i>f</i> -vector	0	1	2	3	4	5	6
(2,2)	L_0	(8, 12, 6)	68.6	31.4	0	-	-	-	-
(2, 2, 2)	L_0	(24, 192, 652, 1062, 848, 306, 38)	0	0	0.1	70.9	27.5	1.5	0
(2,3)	L_0	(18, 96, 200, 174, 54)	0	64.1	18.7	17.2	0	-	-
(2,3)	L_1	(14, 60, 102, 72, 18)	0	76.7	17.4	5.9	0	-	-
(3,3)	L_0	(36, 468, 2730, 8010, 12468, 10200, 3978, 534)	0	0	0.1	58.3	28.2	4.6	8.8
(3,3)	L_1	(24, 216, 960, 2298, 3048, 2172, 736, 82)	0	0	0	65.7	27.8	5.1	1.4
(2,4)	L_0	(32, 336, 1464, 3042, 3168, 1566, 282)	0	0.1	55.1	14.6	25.8	4.4	0
(2,4)	L_1	(20, 144, 486, 846, 774, 342, 54)	0	0	75.3	16.5	8.2	0	0
(2_3)	L_1	(6, 12, 8)	0	98.3	1.7	-	-	-	-
(2_3)	di	(12, 24, 14)	0.2	96.7	3.1	-	-	-	-
$(2_2, 2)$	L_1	(14,60,102,72,18)	0	0	67.6	27.5	4.9	-	-
$(2_2, 2)$	di	(30, 120, 210, 180, 62)	0	0.2	81.9	16.8	1.1	-	-
(3_2)	di	(30, 120, 210, 180, 62)	0	0.2	83.1	16.0	0.7	-	-
(2_4)	L_1	(8, 24, 32, 16)	0	0.1	98.3	1.6	-	-	-
(2_4)	di	(20, 60, 70, 30)	0	0	96.9	3.1	-	-	-

TABLE 6. Distribution of types among optimal solutions for a uniform sample of 1000 points.

Conclusion

When Statistics, Optimization and Algebraic Geometry interact ...

... cool opportunities arise for Algebraic Combinatorics.