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Wasserstein distance

Fix a symmetric n × n matrix d = (dij) with nonnegative entries
that satisfy dii = 0 and dik ≤ dij + djk for all i , j , k .

This turns the set [n] = {1, 2, . . . , n} into a metric space.

Probability distributions on [n] are points in the simplex

∆n−1 =
{

(ν1, . . . , νn) ∈ Rn
≥0 :

∑n
i=1 νi = 1

}
.

Q: How to measure the distance between two distributions µ, ν ∈ ∆n−1?

A: Solve the linear programming problem

Maximize
∑n

i=1 (µi − νi ) xi subject to

|xi − xj | ≤ dij for all 1 ≤ i < j ≤ n.

Optimal value Wd(µ, ν) is the Wasserstein Distance between µ and ν.

This turns the simplex ∆n−1 into a metric space.

−→ Optimal Transport
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Unit Balls

The unit ball of the Wasserstein metric is the polytope

B = conv

{
1

dij
(ei − ej) : 1 ≤ i < j ≤ n

}

Its polar dual is the feasible region of our linear program:

B∗ =
{
x ∈ Rn/R1 : |xi − xj | ≤ dij for all i , j

}

Lipschitz polytope

polytrope
tropical polytope

alcoved polytope
of type A
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zonotope with d + 1 zones, which can be written as conv([0, 1]d ∪ [−1, 0]d). The number of its
pseudo-vertices equals 2d − 2.

xy

z

Figure 4. The pyrope Π3 is a polytrope which, as an ordinary polytope, is a
rhombic dodecahedron.

To obtain the exact upper bound for the number of pseudo-vertices of a polytrope is less
trivial. A class of polytropes attaining the upper bound on the number of pseudo-vertices will
be constructed in the next section.

Proposition 6. (Gelfand, Graev, and Postnikov [12], Theorem 2.3(2); Develin and Sturm-

fels [8], Proposition 19). Each d-polytrope has at most
(2d

d

)
pseudo-vertices, and this bound is

sharp.

The corresponding questions concerning the lower bounds are trivial: The small tropical d-
simplex

(5) tconv(0, e1, e1 + e2, . . . , e1 + e2 + · · · + ed)

is also an ordinary simplex, hence the obvious lower bound of d + 1 for the number of ordinary
facets as well as for the number of pseudo-vertices is actually attained.

Following [8, Proposition 18] we are now going to describe how to obtain the tropical vertices
of a polytrope P from an ordinary inequality description. As in (3) we assume that P is the set

of points in TAd, identified with Rd, satisfying the inequalities

(6) xi − xj ≤ cij for all (i, j) ∈ J,

where J is a subset of {(i, j) | i, j ∈ {0, . . . , d}, i ̸= j} and x0 = 0. Since P is bounded, the set
of vectors

{ei − ej | (i, j) ∈ J} ∪ {±(1, 1, . . . , 1)}
positively spans Rd+1. The last two vectors do not correspond to facet normals, but they make
up for the fact that an ordinary Ad-polyhedron is always unbounded. We will construct a
sequence V = (v0, . . . , vd) of d + 1 points which will turn out to be the tropical vertices of P .
The computation will be organized in a way such that the basic type of P with respect to V is
(0, 1, . . . , d). Each tropical vertex satisfies at least d of the inequalities (6) with equality. This
is immediate from the fact that each tropical vertex of P is also a pseudo-vertex, that is, an
ordinary vertex of P .

First we may assume that each inequality in the description (6) is tight, that is, that the
corresponding ordinary affine hyperplane supports P . Second we may assume that each root
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Fig. 3.2. The geometry of maximum likelihood estimation.

problem of maximizing the log-likelihood function

ℓu(θ) =
m∑

i=1

ui · log(fi(θ)). (3.19)

The geometry of maximum likelihood estimation is illustrated in Figure 3.2.

The polynomial map f maps the low-dimensional parameter space into a very

high-dimensional probability simplex. The image is the statistical model. The

empirical distribution derived from the data vector u is a point in the proba-

bility simplex, and its maximum likelihood estimate p̂ is a point in the model.

If these two points are close to each other then the model is a good fit for

the data. Assuming that the model is identifiable (i.e., the map f is locally

one-to-one), we can compute the unique parameter vector θ̂ which maps to p̂.

Every local and global maximum θ̂ in Θ of the log-likelihood function (3.19)

is a solution of the critical equations

∂ℓu
∂θ1

=
∂ℓu
∂θ2

= · · · =
∂ℓu
∂θd

= 0. (3.20)

The derivative of ℓu(θ) with respect to the unknown θi is the rational function

∂ℓu
∂θi

=
u1

f1(θ)

∂f1

∂θi
+

u2

f2(θ)

∂f2

∂θi
+ · · · +

um

fm(θ)

∂fm

∂θi
. (3.21)

The problem to be studied in this section is computing all solutions θ ∈ Cd

of the critical equations (3.20). Since (3.21) is a rational function, this set of

critical points is an algebraic variety outside the locus where the denominators

of these rational functions are zero. Hence the closure of the set of critical

points of ℓu is an algebraic variety in Cd, called the likelihood variety of the

model f with respect to the data u.

In order to compute the likelihood variety we proceed as follows. We in-

troduce m new unknowns z1, . . . , zm where zi represents the inverse of fi(θ).

The polynomial ring Q[θ, z] = Q[θ1, . . . , θd, z1, . . . , zm] is our “big ring”, as

A discrete statistical model is any subset M⊂ ∆n−1.

We assume that M compact and defined by polynomials.

The Wasserstein distance from the data µ to the model M is

Wd(µ,M) := min
ν∈M

Wd(µ, ν) = min
ν∈M

max
x∈B∗

〈µ− ν, x〉.

Computing this means solving a non-convex optimization problem.
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(
ν1 ν2
ν3 ν4

)
=

(
pq p(1− q)

(1−p)q (1−p)(1−q)

)
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Independence models: M = { matrices or tensors of rank one }

For every facet F of Bd we let
- vF be an outer normal vector to F .
- CF be the cone generated by the vertices of F . CF (x) = CF + x.

We reduce to solving a finite number of polynomial optimization problems:

Wd(x,M) = min
F facet of Bd

min
yœMflCF (x)

Èx ≠ y, vF Í

x x x

Wd(x, M)

Wasserstein distance to an algebraic variety L. Venturello
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µ µ

Figure 3. The Wasserstein balls around a data point touch the curve in either four
or two points. The metrics on [3] are d = (1, 1 � ✏, 1) and d = (1, 2, 1) respectively.

model M ⇢ �3 consists of all nonnegative 2 ⇥ 2 matrices of rank one whose entries sum to one:

(2.2)

✓
⌫1 ⌫2

⌫3 ⌫4

◆
=

✓
pq p(1 � q)

(1�p)q (1�p)(1�q)

◆
, (p, q) 2 [0, 1]2.

Thus, M is the quadratic surface in the tetrahedron �3 defined by the equation ⌫1⌫4 = ⌫2⌫3.
We fix the L0-metric d on the set of binary pairs [2]⇥ [2]. Under our identification (lexicographic

order) of this state space with [4] = {1, 2, 3, 4}, the resulting metric on �3 is given by the 4⇥4 matrix

(2.3) d =

0
B@

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

1
CA .

We now present the optimal value function and the solution function for this independence model.

Theorem 2.2. For the L0-metric on the state space [2]⇥ [2], the Wasserstein distance from a data
distribution µ 2 �3 to the 2-bit independence surface M is given by

Wd(µ, M) =

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

2
p

µ1(1 �p
µ1) � µ2 � µ3 if µ1 � µ4 ,

p
µ1 � µ1 + µ2 ,

p
µ1 � µ1 + µ3,

2
p

µ2(1 �p
µ2) � µ1 � µ4 if µ2 � µ3 ,

p
µ2 � µ1 + µ2 ,

p
µ2 � µ2 + µ4,

2
p

µ3(1 �p
µ3) � µ1 � µ4 if µ3 � µ2 ,

p
µ3 � µ1 + µ3 ,

p
µ3 � µ3 + µ4,

2
p

µ4(1 �p
µ4) � µ2 � µ3 if µ4 � µ1 ,

p
µ4 � µ2 + µ4 ,

p
µ4 � µ3 + µ4,

|µ1µ4 � µ2µ3|/(µ1 + µ2) if µ1 � µ4, µ2 � µ3, µ1+µ2 � p
µ1, µ1+µ2 � p

µ2,

|µ1µ4 � µ2µ3|/(µ1 + µ3) if µ1 � µ4, µ3 � µ2, µ1+µ3 � p
µ1, µ1+µ3 � p

µ3,

|µ1µ4 � µ2µ3|/(µ2 + µ4) if µ4 � µ1, µ2 � µ3, µ2+µ4 � p
µ4, µ2+µ4 � p

µ2,

|µ1µ4 � µ2µ3|/(µ3 + µ4) if µ4 � µ1, µ3 � µ2, µ3+µ4 � p
µ4, µ3+µ4 � p

µ3.
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We now present the optimal value function and the solution function for the model in (2.1). These
two functions are piecewise algebraic. Five pieces are shown in Figure 2. On four of them, the solu-
tion function is algebraic of degree two. The formula involves a square root in the data distribution.
On the fifth piece, the solution function is constant and the optimal value function is linear.

Theorem 2.1. For the discrete metric and for the L1-metric on the state space [3] = {1, 2, 3}, the
Wasserstein distance from a data distribution µ 2 �2 to the Hardy-Weinberg curve M equals

Wd(µ, M) =

8
><
>:

|2pµ1 � 2µ1 � µ2| if µ1 � µ3 � 0 and µ1 � 1
4
,

|2pµ3 � 2µ3 � µ2| if µ1 � µ3  0 and µ3 � 1
4
,

µ2 � 1
2

if µ1  1
4

and µ3  1
4
.

The solution function �2 ! M, µ 7! ⌫⇤(µ) is given (with the same case distinction) by

⌫⇤(µ) =

8
><
>:

(µ1, 2
p

µ1 � 2µ1, 1 + µ1 � 2
p

µ1),

(1 + µ3 � 2
p

µ3, 2
p

µ3 � 2µ3, µ3),

(1
4
, 1

2
, 1

4
).

µ2 � 1
2

2
p

µ1 � 2µ1 � µ2 2
p

µ3 � 2µ3 � µ2

�2
p

µ1 + 2µ1 + µ2 �2
p

µ3 + 2µ3 + µ2

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

Figure 2. The Hardy-Weinberg curve M is shown in red. The optimal value func-
tion for the Wasserstein distance to this curve is piecewise algebraic with five regions.

Theorem 2.1 involves a distinction into three cases. Each of the first two cases gives two algebraic
pieces of the optimal value function. We point out three interesting features. First, there is a full-
dimensional region in �2, namely the top parallelogram in Figure 2, all of whose points µ share
the same optimal solution ⌫⇤(µ) = (1

4
, 1

2
, 1

4
) in M. Second, all points µ on the vertical line segment

{µ : µ1 = µ3, µ2 < 1/2} have two distinct optimal solutions, namely the intersection points of
the curve M with a horizontal line. The identification of such walls of indecision is important for
finding accurate numerical solutions. Third, the optimal value and solution functions agree for the
two metrics in Figure 1. However, one can perturb the discrete metric to observe a di↵erence. This
is illustrated in Figure 3. The point µ = (1

2
, 0, 1

2
) has two closest points in the L1-metric but four

closest points in the Wasserstein distance induced by d = (d12, d13, d23) = (1, 1�✏, 1) for some ✏ > 0.
Next, we increase the dimension by one and consider the tetrahedron �3 whose points are joint

probability distributions of two binary random variables (n = 4, k = 2). The 2-bit independence



Complexity of our Optimization Problem

The optimal value function and solution function are piecewise
algebraic. This suggests a division of our problem into two tasks:

first identify all pieces, then find a formula for each piece.

4 T. ÇELIK, A. JAMNESHAN, G. MONTÚFAR, B. STURMFELS, AND L. VENTURELLO

We now present the optimal value function and the solution function for the model in (2.1). These
two functions are piecewise algebraic. Five pieces are shown in Figure 2. On four of them, the solu-
tion function is algebraic of degree two. The formula involves a square root in the data distribution.
On the fifth piece, the solution function is constant and the optimal value function is linear.

Theorem 2.1. For the discrete metric and for the L1-metric on the state space [3] = {1, 2, 3}, the
Wasserstein distance from a data distribution µ 2 �2 to the Hardy-Weinberg curve M equals

Wd(µ, M) =

8
><
>:

|2pµ1 � 2µ1 � µ2| if µ1 � µ3 � 0 and µ1 � 1
4
,

|2pµ3 � 2µ3 � µ2| if µ1 � µ3  0 and µ3 � 1
4
,

µ2 � 1
2

if µ1  1
4

and µ3  1
4
.

The solution function �2 ! M, µ 7! ⌫⇤(µ) is given (with the same case distinction) by

⌫⇤(µ) =

8
><
>:

(µ1, 2
p

µ1 � 2µ1, 1 + µ1 � 2
p

µ1),

(1 + µ3 � 2
p

µ3, 2
p

µ3 � 2µ3, µ3),

(1
4
, 1

2
, 1

4
).

µ2 � 1
2

2
p

µ1 � 2µ1 � µ2 2
p

µ3 � 2µ3 � µ2

�2
p

µ1 + 2µ1 + µ2 �2
p

µ3 + 2µ3 + µ2

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

Figure 2. The Hardy-Weinberg curve M is shown in red. The optimal value func-
tion for the Wasserstein distance to this curve is piecewise algebraic with five regions.

Theorem 2.1 involves a distinction into three cases. Each of the first two cases gives two algebraic
pieces of the optimal value function. We point out three interesting features. First, there is a full-
dimensional region in �2, namely the top parallelogram in Figure 2, all of whose points µ share
the same optimal solution ⌫⇤(µ) = (1

4
, 1

2
, 1

4
) in M. Second, all points µ on the vertical line segment

{µ : µ1 = µ3, µ2 < 1/2} have two distinct optimal solutions, namely the intersection points of
the curve M with a horizontal line. The identification of such walls of indecision is important for
finding accurate numerical solutions. Third, the optimal value and solution functions agree for the
two metrics in Figure 1. However, one can perturb the discrete metric to observe a di↵erence. This
is illustrated in Figure 3. The point µ = (1

2
, 0, 1

2
) has two closest points in the L1-metric but four

closest points in the Wasserstein distance induced by d = (d12, d13, d23) = (1, 1�✏, 1) for some ✏ > 0.
Next, we increase the dimension by one and consider the tetrahedron �3 whose points are joint

probability distributions of two binary random variables (n = 4, k = 2). The 2-bit independence

(1, 0, 0, 0)

(0, 0, 0, 1)

(0, 1, 0, 0)

(0, 0, 1, 0)

Both tasks have a high degree of complexity.

The first task pertains to combinatorial complexity,
the second task to algebraic complexity. We address both.



Complexity of our Optimization Problem

Combinatorial complexity: How many faces does the unit ball have?
Algebraic complexity: What is the degree of the critical variety?
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zonotope with d + 1 zones, which can be written as conv([0, 1]d ∪ [−1, 0]d). The number of its
pseudo-vertices equals 2d − 2.

xy

z

Figure 4. The pyrope Π3 is a polytrope which, as an ordinary polytope, is a
rhombic dodecahedron.

To obtain the exact upper bound for the number of pseudo-vertices of a polytrope is less
trivial. A class of polytropes attaining the upper bound on the number of pseudo-vertices will
be constructed in the next section.

Proposition 6. (Gelfand, Graev, and Postnikov [12], Theorem 2.3(2); Develin and Sturm-

fels [8], Proposition 19). Each d-polytrope has at most
(2d

d

)
pseudo-vertices, and this bound is

sharp.

The corresponding questions concerning the lower bounds are trivial: The small tropical d-
simplex

(5) tconv(0, e1, e1 + e2, . . . , e1 + e2 + · · · + ed)

is also an ordinary simplex, hence the obvious lower bound of d + 1 for the number of ordinary
facets as well as for the number of pseudo-vertices is actually attained.

Following [8, Proposition 18] we are now going to describe how to obtain the tropical vertices
of a polytrope P from an ordinary inequality description. As in (3) we assume that P is the set

of points in TAd, identified with Rd, satisfying the inequalities

(6) xi − xj ≤ cij for all (i, j) ∈ J,

where J is a subset of {(i, j) | i, j ∈ {0, . . . , d}, i ̸= j} and x0 = 0. Since P is bounded, the set
of vectors

{ei − ej | (i, j) ∈ J} ∪ {±(1, 1, . . . , 1)}
positively spans Rd+1. The last two vectors do not correspond to facet normals, but they make
up for the fact that an ordinary Ad-polyhedron is always unbounded. We will construct a
sequence V = (v0, . . . , vd) of d + 1 points which will turn out to be the tropical vertices of P .
The computation will be organized in a way such that the basic type of P with respect to V is
(0, 1, . . . , d). Each tropical vertex satisfies at least d of the inequalities (6) with equality. This
is immediate from the fact that each tropical vertex of P is also a pseudo-vertex, that is, an
ordinary vertex of P .

First we may assume that each inequality in the description (6) is tight, that is, that the
corresponding ordinary affine hyperplane supports P . Second we may assume that each root

Proposition

Fix the graph metric on a graph G
with vertex set [n]. The Lipschitz polytope is

B∗ = { x ∈ Rn/R1 : |xi − xj | ≤ 1 for every edge (i , j) of G }.

These are the facets when G is bipartite.

Example

If G is the k-cube then the vertices of B∗ are in bijection with
the proper 3-colorings of G , with one vertex of fixed color. For
k = 2, 3, 4, 5, 6, their number is 6, 38, 990, 395094, 33433683534.

We computed the unit balls B for small independence models.
Their combinatorics is an interesting research direction.
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Algebraic Geometry ...

Fix a smooth model M, a linear functional `, and an affine
space L of dimension r , both in general position relative to M.

Theorem
The polar degree δr ofM is the algebraic degree of the problem

Minimize the linear functional ` over the intersection L ∩ M.

Recent work of Luca Sodomaco gives a (complicated) formula for
the polar degrees of all Segre-Veronese varieties. For (P1)k we get

Corollary

IfM is the k-bit independence model then

δr−1(M) =
k−2k+1+r∑

s=0

(−1)s
(
k + 1− s

2k − r

)
(k − s)! 2s

(
k

s

)
.

Chow rings, intersection theory, Segre classes, and all that
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r � codim(M) (2, 3) (2, 4) (2, 5) (2, 6) (3, 3) (3, 4) (3, 5) (3, 6) (4, 4) (4, 5) (4, 6)

0 3 4 5 6 6 10 15 21 20 35 56

1 4 6 8 10 12 24 40 60 60 120 210

2 3 4 5 6 12 27 48 75 84 190 360

3 6 16 30 48 68 176 360

4 3 6 10 15 36 105 228

5 12 40 90

6 4 10 20

Table 3. The polar degrees �r�1(M) of the independence model (m1, m2).

The polar degrees (5.5) are shown in Table 3, with the same labeling convention as in Table 2.

We now apply the discussion of polar degrees to our optimization problem for independence
models. Given a fixed model M, the equality in Theorem 5.1 holds only when the data (`, L) in
(5.1) is generic. However, for the Wasserstein distance problem stated in (3.2), the linear space
L = LF and the linear functional ` = `F are very specific. They depend on the Lipschitz polytope
Pd and the type F of the optimal solution ⌫⇤. For such specific scenarios, we only get an inequality.

Proposition 5.5. Consider the distance optimization problem (3.2) for the independence model
((m1)d1 , . . . , (mk)dk

) with a given face F of the Wasserstein ball P ⇤
d . The degree of the optimal

solution ⌫⇤ as an algebraic function of the data µ is bounded above by the polar degree �r�1 in (5.3).

Proof. This follows from Theorem 5.1. The upper bound relies on general principles of algebraic
geometry. Namely, the graph of the map µ 7! ⌫⇤(µ) is an irreducible variety, and we are interested
in its degree over µ. The map depends on the parameters (`, L). When the coordinates of L and `
are independent transcendentals then the algebraic degree is the polar degree �r�1. That algebraic
degree can only go down when these coordinates take on special values in the real numbers. That
same semi-continuity argument holds for most polynomial optimization problems. It is used tacitly
for Euclidean distance optimization in [5, §2] and for semidefinite programming in [12, §3]. ⇤

We now study the drop in algebraic degree for the four models that were specified in Example 4.8.
In the language of algebraic geometry, our four models are the Segre threefold P1⇥P1⇥P1 in P7, the
variety P2 ⇥P2 of rank one 3⇥3 matrices in P8, the rational normal curve P1 in P6 = P(Sym6(R2)),
and the Segre-Veronese surface P1 ⇥ P1 in P5 = P(Sym2(R2) ⇥ Sym1(R2)). The underlying finite
metrics d are specified in the fourth column of Table 1. The fifth column records the combinatorial
complexity of our optimization problem, while the algebraic complexity is recorded in Table 4.

The second column in Table 4 gives the vector (�0, �1, . . . , �n�2) of polar degrees for the model M
under consideration. The third and fourth column are the results of our computational experiments.
For each model, we take 1000 uniform samples µ with rational coordinates from the simplex �n�1,
and we solve the optimization problem (1.3) using the methods described in Section 6. The output
is an exact representation of the optimal solution ⌫⇤. This includes the optimal face F that specifies
⌫⇤, along with its maximal ideal in the polynomial ring over the field Q of rational numbers.

The algebraic degree of the optimal solution ⌫⇤ is computed as the number of complex zeros of
that maximal ideal. This number is bounded above by the polar degree, as seen in Proposition 5.5.
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We now present the optimal value function and the solution function for the model in (2.1). These
two functions are piecewise algebraic. Five pieces are shown in Figure 2. On four of them, the solu-
tion function is algebraic of degree two. The formula involves a square root in the data distribution.
On the fifth piece, the solution function is constant and the optimal value function is linear.

Theorem 2.1. For the discrete metric and for the L1-metric on the state space [3] = {1, 2, 3}, the
Wasserstein distance from a data distribution µ 2 �2 to the Hardy-Weinberg curve M equals

Wd(µ, M) =

8
><
>:

|2pµ1 � 2µ1 � µ2| if µ1 � µ3 � 0 and µ1 � 1
4
,

|2pµ3 � 2µ3 � µ2| if µ1 � µ3  0 and µ3 � 1
4
,

µ2 � 1
2

if µ1  1
4

and µ3  1
4
.

The solution function �2 ! M, µ 7! ⌫⇤(µ) is given (with the same case distinction) by

⌫⇤(µ) =

8
><
>:

(µ1, 2
p

µ1 � 2µ1, 1 + µ1 � 2
p

µ1),

(1 + µ3 � 2
p

µ3, 2
p

µ3 � 2µ3, µ3),

(1
4
, 1

2
, 1

4
).

µ2 � 1
2

2
p

µ1 � 2µ1 � µ2 2
p

µ3 � 2µ3 � µ2

�2
p

µ1 + 2µ1 + µ2 �2
p

µ3 + 2µ3 + µ2

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

Figure 2. The Hardy-Weinberg curve M is shown in red. The optimal value func-
tion for the Wasserstein distance to this curve is piecewise algebraic with five regions.

Theorem 2.1 involves a distinction into three cases. Each of the first two cases gives two algebraic
pieces of the optimal value function. We point out three interesting features. First, there is a full-
dimensional region in �2, namely the top parallelogram in Figure 2, all of whose points µ share
the same optimal solution ⌫⇤(µ) = (1

4
, 1

2
, 1

4
) in M. Second, all points µ on the vertical line segment

{µ : µ1 = µ3, µ2 < 1/2} have two distinct optimal solutions, namely the intersection points of
the curve M with a horizontal line. The identification of such walls of indecision is important for
finding accurate numerical solutions. Third, the optimal value and solution functions agree for the
two metrics in Figure 1. However, one can perturb the discrete metric to observe a di↵erence. This
is illustrated in Figure 3. The point µ = (1

2
, 0, 1

2
) has two closest points in the L1-metric but four

closest points in the Wasserstein distance induced by d = (d12, d13, d23) = (1, 1�✏, 1) for some ✏ > 0.
Next, we increase the dimension by one and consider the tetrahedron �3 whose points are joint

probability distributions of two binary random variables (n = 4, k = 2). The 2-bit independence

(1, 0, 0, 0)

(0, 0, 0, 1)

(0, 1, 0, 0)

(0, 0, 1, 0)
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M d dim(M) # facets of B avg # feasible probs.
(2, 2) L0 2 6 5.000

(2, 2, 2) L0 3 38 23.734
(2, 3) L0 3 54 30.000
(2, 3) L1 3 18 12.645
(3, 3) L0 4 534 162.307
(3, 3) L1 4 82 40.626
(2, 4) L0 4 282 110.165
(2, 4) L1 4 54 32.223
(23) L1 1 8 4.000
(23) di 1 14 5.182

(22, 2) L1 2 18 8.604
(22, 2) di 2 62 24.618

(32) di 2 62 24.365
(24) L1 1 16 5.000
(24) di 1 30 8.690

Table 5. The number of feasible optimization problems for a uniform sample of 1000 points.

indicates the fraction of volume enclosed between the red surfaces and the edges of �3 they cover.

% of opt. solutions of dim(type) = i
M d f -vector 0 1 2 3 4 5 6

(2, 2) L0 (8, 12, 6) 68.6 31.4 0 - - - -
(2, 2, 2) L0 (24, 192, 652, 1062, 848, 306, 38) 0 0 0.1 70.9 27.5 1.5 0

(2, 3) L0 (18, 96, 200, 174, 54) 0 64.1 18.7 17.2 0 - -
(2, 3) L1 (14, 60, 102, 72, 18) 0 76.7 17.4 5.9 0 - -
(3, 3) L0 (36,468,2730,8010,12468,10200,3978,534) 0 0 0.1 58.3 28.2 4.6 8.8
(3, 3) L1 (24, 216, 960, 2298, 3048, 2172, 736, 82) 0 0 0 65.7 27.8 5.1 1.4
(2, 4) L0 (32, 336, 1464, 3042, 3168, 1566, 282) 0 0.1 55.1 14.6 25.8 4.4 0
(2, 4) L1 (20, 144, 486, 846, 774, 342, 54) 0 0 75.3 16.5 8.2 0 0
(23) L1 (6, 12, 8) 0 98.3 1.7 - - - -
(23) di (12, 24, 14) 0.2 96.7 3.1 - - - -

(22, 2) L1 (14,60,102,72,18) 0 0 67.6 27.5 4.9 - -
(22, 2) di (30, 120, 210, 180, 62) 0 0.2 81.9 16.8 1.1 - -

(32) di (30, 120, 210, 180, 62) 0 0.2 83.1 16.0 0.7 - -
(24) L1 (8, 24, 32, 16) 0 0.1 98.3 1.6 - - -
(24) di (20, 60, 70, 30) 0 0 96.9 3.1 - - -

Table 6. Distribution of types among optimal solutions for a uniform sample of 1000 points.

In this article we studied the Wasserstein distance problem for discrete statistical models, with
emphasis on the combinatorics, algebra and geometry of independence models. The theoretical
results we obtained here constitute the foundation for a class of iterative algorithms that can
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6 JOSWIG AND KULAS

zonotope with d + 1 zones, which can be written as conv([0, 1]d ∪ [−1, 0]d). The number of its
pseudo-vertices equals 2d − 2.

xy

z

Figure 4. The pyrope Π3 is a polytrope which, as an ordinary polytope, is a
rhombic dodecahedron.

To obtain the exact upper bound for the number of pseudo-vertices of a polytrope is less
trivial. A class of polytropes attaining the upper bound on the number of pseudo-vertices will
be constructed in the next section.

Proposition 6. (Gelfand, Graev, and Postnikov [12], Theorem 2.3(2); Develin and Sturm-

fels [8], Proposition 19). Each d-polytrope has at most
(2d

d

)
pseudo-vertices, and this bound is

sharp.

The corresponding questions concerning the lower bounds are trivial: The small tropical d-
simplex

(5) tconv(0, e1, e1 + e2, . . . , e1 + e2 + · · · + ed)

is also an ordinary simplex, hence the obvious lower bound of d + 1 for the number of ordinary
facets as well as for the number of pseudo-vertices is actually attained.

Following [8, Proposition 18] we are now going to describe how to obtain the tropical vertices
of a polytrope P from an ordinary inequality description. As in (3) we assume that P is the set

of points in TAd, identified with Rd, satisfying the inequalities

(6) xi − xj ≤ cij for all (i, j) ∈ J,

where J is a subset of {(i, j) | i, j ∈ {0, . . . , d}, i ̸= j} and x0 = 0. Since P is bounded, the set
of vectors

{ei − ej | (i, j) ∈ J} ∪ {±(1, 1, . . . , 1)}
positively spans Rd+1. The last two vectors do not correspond to facet normals, but they make
up for the fact that an ordinary Ad-polyhedron is always unbounded. We will construct a
sequence V = (v0, . . . , vd) of d + 1 points which will turn out to be the tropical vertices of P .
The computation will be organized in a way such that the basic type of P with respect to V is
(0, 1, . . . , d). Each tropical vertex satisfies at least d of the inequalities (6) with equality. This
is immediate from the fact that each tropical vertex of P is also a pseudo-vertex, that is, an
ordinary vertex of P .

First we may assume that each inequality in the description (6) is tight, that is, that the
corresponding ordinary affine hyperplane supports P . Second we may assume that each root
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For every facet F of Bd we let
- vF be an outer normal vector to F .
- CF be the cone generated by the vertices of F . CF (x) = CF + x.

We reduce to solving a finite number of polynomial optimization problems:

Wd(x,M) = min
F facet of Bd

min
yœMflCF (x)

Èx ≠ y, vF Í

x x x

Wd(x, M)

Wasserstein distance to an algebraic variety L. Venturello

... cool opportunities arise for Algebraic Combinatorics.


