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Sensitivity Analysis: Estimating the effect of changes
(perturbations, approximations, errors, inaccuracies) of a
(optimization/control) problem on solutions.

Has been traditionally identified with determining derivatives of
the optimal value and/or an optimal solution with respect to
parameters.

But for optimization problems with constraints finding derivatives
might be challenging (generalized derivatives).

And even more difficult for optimal control problems, where in
addition one has to differentiate in infinite dimensions.



Sensitivity analysis has direct applications to proving convergence
of optimization algorithms.

A. V. Fiacco, G. P. Mccormick, Nonlinear programming: sequential
unconstrained minimization techniques, Wiley 1968.

minimize g0(p, x)

subject to
gi (p, x) ≤ 0, i = 1, . . . , s

x ∈ IRn, p ∈ IRk

Lagrange function

L(p, x , y) = g0(p, x) +
s∑

i=1

yigi (p, x)

KKT conditions (under a constraint qualification)

.........



Theorem (Fiacco–Mccormick).

Let x̄ be a solution for p̄ and ȳ be an associated Lagrange
multiplier. Let gi , i = 0, . . . ,m be twice continuously differentiable
around (p̄, x̄). Suppose that the following conditions are satisfied
at (p̄, x̄ , ȳ):
(i) the gradients of Dxgi (p̄, x̄) of the active constraints are linearly
independent;
(ii) the second-order sufficiency;
(iii) the strict complementarity slackness.
Then the mapping p 7→ (x̄(p), ȳ(p)) has a continuously
differentiable single-valued graphical localization around p̄ for
(x̄ , ȳ).
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Condition (iii) may never hold at points where a constraint change
from active to nonactive.



Hildebrand-Graves Theorem (slightly updated)

Lipschitz modulus

lip(f ; x̄) := lim sup
x′,x→x̄,
x 6=x′

‖f (x ′)− f (x)‖
‖x ′ − x‖

.

Theorem (T. Hildebrand, L. M. Graves, TAMS 29 (1927)
127–153).

Let X be a Banach space and consider a function f : X → X and a
linear bounded mapping A : X → X which is invertible. Suppose
that

lip(f − A; x̄) · ‖A−1‖ < 1.

Then f −1 has a single-valued localization around f (x̄) for x̄ which
is Lipschitz continuous.

The H-G IFT implies the classical (Dini) IFT: f is strictly
differentiable at x̄ ⇐⇒ lip(f − Df (x̄); x̄) = 0.



T. Hildebrand (1888–1980) and L. Graves (1886–1973)



Robinson’s Theorem

S. M. Robinson, Strongly regular generalized equations, Math. of
OR 5 (1980) 43–62.

This is an implicit function theorem for variational inequalities

(∗) f (p, x) + NC (x) 3 0,

where f : P × X → X ∗, P and X are Banach spaces, and NC is
the normal cone mapping to the convex and closed set C ⊂ X :

NU(x)=

{
{y ∈ X ∗ | 〈y , v − x〉 ≤ 0 for all v ∈ U} if x ∈ C ,
∅ otherwise.



Robinson’s theorem, slightly simplified

Theorem.

Let x̄ is a solution of (∗) for p̄ and assume that the inverse of the
linearized mapping

y 7→ (f (p̄, x̄) + Dx f (p̄, x̄)(· − x̄) + NC (·))−1(y)

has a Lipschitz continuous single-valued localization at 0 for x̄ .
Then the solution mapping of (∗) has a Lipschitz continuous
single-valued localization at p̄ for x̄ .

The property in blue was called by Robinson strong regularity.

Addition: If the localization of the inverse is (directionally, semi-,
Fréchet, strictly) differentiable then so is the localization of the
solution mapping.

For F = 0 we (almost) obtain the classical implicit function
theorem.



Strong regularity of generalized equations

Strong regularity of F at x̄ for ȳ : (x̄ , ȳ) ∈ gphF and F−1 has a
Lipschitz continuous single-valued localization around ȳ for x̄ .

Generalized equations

f (p, x) + F (x) 3 0,

where f : P × X → Y is a function and F is a set-valued mapping.

Solution mapping

p 7→ S(p) =
{
x
∣∣ f (p, x) + F (x) 3 0

}



Robinson’s theorem, extended

Theorem.

Let X be a complete metric space, let Y be a linear metric space
with a shift-invariant metric and let P be a metric space. For a
function f : P × X → Y and a set-valued mapping F : X →→ Y ,
consider the generalized equation f (p, x) + F (x) 3 0 with solution
mapping S having x̄ ∈ S(p̄). Let κ and µ be positive constants
such that κµ < 1.
Let h : X → Y be such that h(x̄) = f (p̄, x̄) and

l̂ipx(f − h; (p̄, x̄)) < µ. Also suppose that h + F is strongly
regular at x̄ for 0 with a Lipschitz continuous single-valued
localization around 0 for x̄ having Lipschitz constant κ.
Then the mapping S has a single-valued localization s around p̄ for
x̄ which is Lipschitz continuous near p̄ with

lip(s; p̄) ≤ κ

1− κµ
l̂ipp(f ; (p̄, x̄)).



Keeping track of the constants

Theorem.

Consider a mapping F : X →→ Y with ȳ ∈ F (x̄), where X and Y
are Banach spaces, and suppose that there exist constants κ ≥ 0,
a > 0 and b > 0 such that the truncated inverse mapping

IBb(ȳ) 3 y 7→ F−1(y) ∩ IBa(x̄)

is single-valued and Lipschitz continuous on IBb(ȳ) with Lipschits
constant κ. Let µ > 0 be such that κµ < 1 and let
κ′ > κ/(1− κµ). Then for every positive α and β such that

α ≤ a/2, 2µα + 2β ≤ b and 2κ′β ≤ α

and every function f : X → Y satisfying ‖f (x̄)‖ ≤ β and
‖f (x)− f (x ′)‖ ≤ µ‖x − x ′‖ for every x , x ′ ∈ IB2α(x̄), the
mapping y 7→ (f + F )−1(y) ∩ IBα(x̄) is a Lipschitz continuous
function on IBβ(x̄) with Lipschitz constant κ′.



Strong regularity of the KKT mapping

minimize g0(p, x) subject to gi (p, x)

{
≤ 0 for i ∈ [1, s],

= 0 for i ∈ [s + 1,m],

the functions g0, g1, . . . , gm are twice continuously differentiable.
Lagrangian

L(p, x , y) = g0(p, x) + y1g1(p, x) + · · ·+ ymgm(p, x)

Under (Mangasarian-Fromovitz) constraint qualification, the KKT
optimality system is

(1) f (p, x , y) + NE (x , y) 3 (0, 0),

where {
f (p, x , y) = (∇xL(p, x , y),−∇yL(p, x , y)),

E = IRn × [IRs
+ × IRm−s ].

KKT solution mapping of (1)



Notation
I =

{
i ∈ [1,m]

∣∣ gi (p̄, x̄) = 0
}
,

I0 =
{
i ∈ [1, s]

∣∣ gi (p̄, x̄) = 0 and ȳi = 0
}

M+ =
{
w ∈ IRn

∣∣w ⊥ ∇xgi (p̄, x̄) for all i ∈ I\I0
}
.

Theorem.

For the KKT solution mapping S , let (x̄ , ȳ) ∈ S(p̄) and assume
that the following conditions are both fulfilled:

(a) the gradients ∇xgi (p̄, x̄) for i ∈ I are linearly independent,
(b) 〈w ,∇2

xxL(p̄, x̄ , ȳ)w〉 > 0 for every nonzero w ∈ M+.
Then the mapping S has a Lipschitz continuous single-valued
localization s around p̄ for (x̄ , ȳ).
Moreover, if the matrix [∇pgi (p̄, x̄)] has full rank, then conditions
(a) and (b) are also necessary (ample parameterization).



Optimal Control

Minimize

∫ T

0
ϕ(p, x(t), u(t))dt

subject to

ẋ(t) = g(p, x(t), u(t)), x(0) = 0,

u(t) ∈ U for a.e. t ∈ [0,T ], u ∈ L∞, x ∈W 1,∞
0

p ∈ IRd is a parameter with reference value p̄.

Standing Assumptions: U is closed and convex. The functions ϕ
and g are twice differentiable and their second derivatives are
locally Lipschitz continuous. There exists a locally optimal solution
(x̄ , ū) of the problem for p̄.



First-order necessary optimality condition

Hamiltonian

H(p, x , u, q) = ϕ(p, x , u) + qTg(p, x , u)

Optimality system
ẋ(t) = g(p, x(t), u(t)), x0 = 0,
q̇(t) = −∇xH(p, x(t), u(t), q(t)), q(T ) = 0,
0 ∈ ∇uH(p, x(t), u(t), q(t)) + NU(u(t)),

all for a.e. t ∈ [0,T ].
Can be written as a generalized equation

f (p, x) + F (x) 3 0

which is not a variational inequality.



Strong regularity of the optimality system

Define the matrices

A(t) = ∇x ḡ(t), B(t) = ∇u ḡ(t),
Q(t) = ∇xx H̄(t), S(t) = ∇xuH̄(t), R(t) = ∇uuH̄(t),

– coercivity: there exists a constant α > 0 such that∫ T

0
(y(t)TQ(t)y(t) + w(t)TR(t)w(t) + 2y(t)TS(t)w(t))dt

≥ α
∫ T

0
|w(t)|2dt

for all y ∈W 1,2, y(0) = 0,w ∈ L2 such that
ẏ(t) = A(t)y(t) + B(t)w(t), y(0) = 0, and w(t) ∈ U −U for a.e.
t ∈ [0,T ].
- isolatedness: The optimal control ū has a representative
which is an isolated solution of the inclusion

∇uH(p̄, x̄(t), u, q̄(t)) +NU(u) 3 0 for all t ∈ [0,T ].



Under coercivity and isolatedness

– the optimal control ū has a representative which is Lipschitz
continuous in time t ∈ [0,T ];

– the mapping describing the optimality system for p̄ is strongly
regular at (x̄ , ū, q̄) for 0;

– the mapping “p 7→ the set of solutions of the optimality system”
has a Lipschitz continuous single-valued localization around p̄.



Discrete approximation

Choose uniform grid {ti}; ti+1 − ti = h = T/N and consider

Minimize
N−1∑
i=0

hϕ(p, xi , ui )

subject to

xi+1 = xi +hg(p̄, xi , ui ), ui ∈ U for i = 0, 1, . . . ,N−1, x0 = 0,

Optimality system
xi+1 = xi + hg(p̄, xi , ui ), x0 = 0,
qi−1 = qi + h∇xH(p̄, xi , ui , qi ), qN−1 = 0,
0 ∈ ∇uH(p̄, xi , ui , qi ) + NU(ui ),

Under coercivity and isolatedness, if ūN is a piecewise constant
interpolation of the optimal control of the discretized problem, then

‖ū − ūN‖C = O(h).

The proof uses (a version of) Robinson’s theorem.



Newton’s method

Solving equations: f (xk) + Df (xk)(xk+1 − xk) = 0.

Solving generalized equations:
f (xk) + Df (xk)(xk+1 − xk) + F (xk+1) 3 0

In optimization: Sequential Quadratic Programming (SQP)

N. Josephy (1979): Strong regularity implies quadratic
convergence to a solution when the starting point is close to it.

Moreover, under coercivity and isolatedness, when applied to a
discretized optimal control problem with a parameter, the
convergence is uniform with respect to the discretization step and
small changes of the parameter.



Example: Spacecraft reorientation

State: angular velocities ω ∈ R3

Control: torques u ∈ R3, subject to box constraints
State equation {

θ̇ = E (θ)ω
ω̇ = ω̂Jω + u,

where

E (θ) =
1

cos([θ]2)

c([θ]2) s([θ]1)s([θ]2) c([θ]1)s([θ]2)
0 c([θ]1)c([θ]2) −s([θ]1)c([θ]2)
0 s([θ]1) c([θ]1)

 ,

ω̂ =

 0 [ω]3 −[ω]2
−[ω]3 0 [ω]1

[ω]2 −[ω]1 0

 ,
Quadratic cost functional: stabilize the reorientation.



The control error ‖uk − ūN‖∞ versus the number of
iterations for different values of ω̂ and N .
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Optimal feedback control

A mapping (t, x) 7→ u(t, x) such that when applied to the plant,
the resulting (x , u) is optimal for every initial state

Under coercivity and isolatedness, there exists an optimal feedback
control which is a locally Lipschitz continuous function.



Model Predictive Control (MPC)

MPC: an algorithmic approximation of the optimal feedback
control
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Thanks to Ilya Kolmanovsky



Model predictive control: Infinite horizon



Finite horizon



The MPC algorithm

1. Discretize the problem.
2. Assume that a control uN is already determined on [0, tk);
3. Solve the discrete-time optimal control problem

min
N−1∑
i=k

hϕ(xi , ui )

subject to

xi+1 = xi + hg(xi , ui ), ui ∈ U, i = k, . . . ,N − 1, xk := x0
k ,

obtaining an optimal discrete-time control (ũk , . . . , ũN−1);
4. Define the constant in time function

uN(t) = ũk for t ∈ [tk , tk+1),

and apply it to the continuous-time system on [tk , tk+1]. Measure
the value x0

k+1 of the resulting state at tk+1 with error ξk . Change
k to k + 1 and go to 1.



MPC involves discrete approximations, perturbations,
optimization

– discrete approximation: error bounds in terms of the step size h?

– the initial state and the optimization interval change at each
step: does the solution depends continuously on the initial state?

– repeated solving of similar optimization problems: does the
method chosen behave similarly throughout the iterations? Do we
need to always solve the optimization problems exactly?

– MPC-generated control: what is the difference between
MPC-generated and an optimal feedback control?

Answers could be found by employing strong regularity.



The MPC-generated control is an approximation of the
optimal feedback control

uN — the MPC-generated control
xN — the state trajectory of the continuous-time system obtained
for uN

x f — the state trajectory obtained by applying the optimal
feedback uf

û(t) := uf (t, x f (t))

Theorem.

Under coercivity and isolatedness, there exist a natural N0 and
positive constants ε0 and c such that for every N ≥ N0 and for
every measurement error ξ with max0≤i≤N−1 |ξi | ≤ ε0, the
following estimate holds:

‖uN − û‖L1 + ‖xN − x f ‖W 1,1 ≤ c
(
h + h

N−1∑
i=1

|ξi |
)
.



Closing remarks

– Finding (generalized) derivatives of solutions remains a main goal
in sensitivity analysis, but these are not always available. Instead,
one may directly employ quantitative (Lipschitz) properties. Strong
regularity could be particularly helpful for determining Lipschitz
constants;

— strong regularity can be used to not only evaluate the effect of
parameter perturbations but also to find error estimates for various
approximations of the problem, as well as obtaining (uniform)
convergence of algorithms;

– strong regularity is just one regularity property of set-valued
mappings involved in optimization problems; there are several
other regularities such as metric regularity, subregularity, strong
subregularity, that are not fully explored yet.
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Thank You!


