Derivatives of Solutions of Saddle-Point Problems

Antonin Chambolle

CEREMADE, CNRS, Univ. Paris-Dauphine / PSL, France

(joint with T. Pock)

One World Optimization Seminar, Vienna, 1st March 2021
Outline:

▷ Some bi-level problems involving total variation minimization;
▷ Homogenization: case of a loss depending on the value;
▷ More general losses: adjoint states;
▷ “Piggyback [style] algorithm” and results.
Related work

- A lot of literature on parameter learning for TV-regularization problems (for one parameter but also with varying parameters), usually for one image;
- Most papers focus on the continuous setting and then propose to solve an adjoint equation;
- Our work is more “discrete” and focuses on the algorithms (but of course, some similarities).

[Dong, Hintermüller, Rincon-Camacho 2010] ([Bredies et al 2013 for TGV]) [Kunisch-Pock 2013] [De Los Reyes, Schönlieb, Valkonen 2015], [Calatroni et al 2015-17] [Hintermüller-Rautenberg 17], [Hintermüller-et al 17], [Hintermüller-Papafistoros HNA 2019]
Starting point

Improve or learn discrete surface energies / total variations so that

- They are faithful, possibly precise approximations of the continuous T.V.;
- They behave “well” at the discrete level (isotropy, sharpness...)
0. Typical model:

Focus on problems of the form:

$$\min_{u = u^0} \int_{\partial \Omega} |Du| \quad \left(\text{or} \quad \int_{\Omega} |u - g|^2 \, dx \right)$$

where $u^0 \in \{0, 1\}$, so that this is equivalent to finding sets E with lowest perimeter and boundary condition $\chi_E = u^0$. One expects to find (in general) sharp solutions $u \in \{0, 1\}$ a.e.

Discretize: One minimizes in practice a convex problem of the form

$$\min_{u_i = u^0_i, i \in I^0} F_h(u_i) : u \in \mathbb{R}^{N(h)}$$

where $(u_i)_{i=1}^{N(h)}$ is supposed to be a discrete representation of u at scale $h > 0$, and F_h approximates the total variation in some sense.
In practice, depending on the form of F_h, one can expect more or less “nice” or “precise” results (sharp, isotropic, or not...) ⇒ could one “learn” the “best” one (or a better one)?
Typical model:

Here the discrete problem has the form

$$\min_{u \in C_u} \sup_{w \in C_w} \langle w, Du \rangle$$

for D some discrete derivative, and where C_u and C_w are convex sets. Simpler versions include

$$\min_{u \in C_u} \sup_{w \in C_w} \langle w, Du \rangle + \frac{1}{2} \|u - g\|^2$$

(“ROF”) which is strongly convex wr u, or a “regularized” variant:

$$\min_{u \in C_u} \sup_{w \in C_w} \langle w, Du \rangle - \frac{\varepsilon}{2} \|w\|^2 + \frac{\varepsilon}{2} \|u\|^2$$

for $\varepsilon > 0$ a small parameter, which is strongly convex wr both u and w.
I. Easier case

Let us consider for a start an “easy” case. We will try to build an “isotropic-ℓ_1” discretization. Assume we are given a discrete 2D image $u_{i,j}$ on a square grid, we define a graph total variation as

$$\sum_{(i,j),(i',j')} \alpha_{(i,j),(i',j')} (u_{i',j'} - u_{i,j})^+$$

(here $x^+ = \max\{x, 0\}$). The simplest form would be:

$$\sum_{i,j} \alpha^+_{i+\frac{1}{2},j} (u_{i+1,j} - u_{i,j})^+ + \alpha^-_{i+\frac{1}{2},j} (u_{i,j} - u_{i+1,j})^+$$

$$+ \alpha^+_{i,j+\frac{1}{2}} (u_{i,j+1} - u_{i,j})^+ + \alpha^-_{i,j+\frac{1}{2}} (u_{i,j} - u_{i,j+1})^+$$

which involves only horizontal/vertical directions.
An easy case

Clearly, if all the α's are 1, this is an “ℓ_1” discretization of the total variation, which in a continuum limit would approximate the anisotropic functional $\int |\partial_1 u| + |\partial_2 u|$, and produces block artefacts. On the other hand, it is very easy and fast to optimize (graph cuts, or horizontal/vertical splitting...).
An easy case: homogenization

The isotropy can be improved by “homogenization”. In practice, the idea is to use periodic oscillating weights α^\pm which produce, in the continuum limit, an “effective surface tension” given by an exact “cell formula”, defined for $\nu \in \mathbb{R}^2$,

$$\phi(\nu) = \min_u \left\{ \sum_{(i,j) \in Y} \alpha^+_{i+\frac{1}{2},j}(u_{i+1,j} - u_{i,j})^+ + \alpha^-_{i+\frac{1}{2},j}(u_{i,j} - u_{i+1,j})^+ + \alpha^+_{i,j+\frac{1}{2}}(u_{i,j+1} - u_{i,j})^+ + \alpha^-_{i,j+\frac{1}{2}}(u_{i,j} - u_{i,j+1})^+ : u_{i,j} - \nu \cdot \binom{i}{j} \text{ Y-periodic} \right\}$$

where here Y is a periodicity cell of the form $\{1, \ldots, n\} \times \{1, \ldots, m\}$. (Typically, $m = n = 2, 3, 4, \ldots$)
An easy case: homogenization

... and one would be interested in solving:

$$\min_{(\alpha)} \mathcal{L}(\alpha) := \frac{1}{2} \sum_{i=1}^{k} |\phi(\nu_i) - 1|^2$$

where the “loss” \mathcal{L} depends on α through the dependence of $\phi(\cdot)$ on α and ν_i are a set of given directions. So one needs to estimate $\nabla_{(\alpha)} \phi(\nu_i)$, for each direction ν_i.
In our case the minimal energy $\phi(\nu)$ can be found by solving a saddle-point problem:

$$
\phi(\nu) = \min_{u \in C_i(\nu)} \sup_{w \in C_w} \langle D(\alpha)u, w \rangle
$$
In our case the minimal energy $\phi(\nu)$ can be found by solving a saddle-point problem:

$$
\phi(\nu) = \min_{u \in C_i(\nu)} \sup_{w \in C_w} \langle D(\alpha)u, w \rangle - \frac{\varepsilon}{2} \| w \|^2 + \frac{\varepsilon}{2} \| u - \left(\begin{array}{c} i \\ j \end{array} \right) \cdot \nu \|^2
$$

which we regularize in order to have a unique solution $(u(D), w(D))$ for a given discrete derivative operator D.
Derivative of the energy

Thanks to the regularization one easily sees that

- $D \mapsto (u(D), w(D))$ is continuous and
- $D \mapsto \phi(\nu) =: E_\nu(D)$ is $C^{1,1}$.

Indeed:

$$\sup_{w \in C_w} \langle Du, w \rangle - \frac{\varepsilon}{2} \|w\|^2$$

- is convex with $(1/\varepsilon)$-Lipschitz gradient with respect to Du
- is convex with (C/ε)-Lipschitz gradient with respect to D in a neighborhood of D, for $C > \|u(D)\|^2$.
- so its \inf_u has Hessian bounded from above.
Derivative of the energy

Thanks to the regularization one easily sees that

1. $D \mapsto (u(D), w(D))$ is continuous and
2. $D \mapsto \phi(\nu) =: \mathcal{E}_\nu(D)$ is $C^{1,1}$.

Indeed:

$$\sup_{w \in C_w} \langle Du, w \rangle - \frac{\varepsilon}{2} \| w \|^2$$

is convex with $(1/\varepsilon)$-Lipschitz gradient with respect to Du

is convex with (C/ε)-Lipschitz gradient with respect to D in a neighborhood of D, for $C > \| u(D) \|^2$.

so its \inf_u has Hessian bounded from above.

symetrically (taking first \inf_u then \sup_w) one gets a bound from below.
Derivative of the energy

Then, computing the differential is quite standard (one can for instance estimate $\mathcal{E}_\nu(D + tL)$, t small, from above and below using the optimal values u_t, w_t, and pass to the limit...) and one finds

$$\nabla_D \mathcal{E}_\nu(D) = w(D) \otimes u(D)$$

So here one just needs to solve (with some precision) the saddle point to evaluate the derivative from the optimal solutions (u, w). Then one can implement a gradient descent and optimize the main criterion $\mathcal{L}(\alpha)$.

Possible extension: smooth only wrt u or w. Then the energy will still be either semi-concave or semi-convex and one can evaluate the (sub/super)gradient in the same way.
Derivative of the energy

Then, computing the differential is quite standard (one can for instance estimate $E_\nu(D + tL), t$ small, from above and below using the optimal values u_t, w_t, and pass to the limit...) and one finds

$$\nabla_D E_\nu(D) = w(D) \otimes u(D)$$

So here one just needs to solve (with some precision) the saddle point to evaluate the derivative from the optimal solutions (u, w). Then one can implement a gradient descent and optimize the main criterion $\mathcal{L}(\alpha)$.

Possible extension: smooth only wr u or w. Then the energy will still be either semi-concave or semi-convex and one can evaluate the (sub/super)gradient in the same way.
Application / Results

2 × 2 periodicity cell

8 × 8
Application / Results

ℓ_1-TV

2×2

4×4

8×8
Application / Results

ℓ_1-TV

4 × 4

2 × 2

8 × 8
Application / Results: denoising

Noisy

\(\ell_1\)-TV

\(2 \times 2\)

\(8 \times 8\)
Application / Results: denoising

Noisy

ℓ₁-TV

2 × 2

8 × 8
II. More general losses

Up to now the loss was of the form $\mathcal{L}(D) = \ell(\mathcal{E}(D))$.
Now, what about a more general loss $\mathcal{L}(D) := \ell(u(D), w(D))$ for (u, w) the saddle-point?
Typical example is $\min_D \ell(u(D))$, with u solving

$$\min_u |Du|_1 + \frac{\|u - g\|_2^2}{2},$$

D is in a class of operator realizing a consistent discretization of the total variation, and ℓ measures the discrepancy between $u(D)$ and a “true solution” (for instance, exact continuous solution), cf C-Pock 2020/21.
General model

So the idea is to consider a generic bilinear saddle-point problem:

$$\min_x \sup_y g(x) + \langle Kx, y \rangle - f^*(y)$$

with g, f^* strongly convex so that $(x(K), y(K))$ is uniquely defined (and continuous). How to differentiate wr K?
General model

So the idea is to consider a generic bilinear saddle-point problem:

$$\min_x \sup_y g(x) + \langle Kx, y \rangle - f^*(y)$$

with g, f^* strongly convex so that $(x(K), y(K))$ is uniquely defined (and continuous). How to differentiate wr K?

Classical method (now): Implement a 1st order algorithm to approximate $u(K)$ with some $u^n, n \geq 1$. Then “unroll” the iterations (u^0, \ldots, u^n) and use automatic differentiation and back-propagation to estimate $\nabla_K u^n$.

Issues: strange dependence on u^0, and difficult if the problem is large or requires too many iterations (costs a lot of memory).
General model

So the idea is to consider a generic bilinear saddle-point problem:

\[
\min_x \sup_y g(x) + \langle Kx, y \rangle - f^*(y)
\]

with \(g, f^* \) strongly convex so that \((x(K), y(K))\) is uniquely defined (and continuous). How to differentiate wr \(K \)?

Classical method (now): Implement a 1st order algorithm to approximate \(u(K) \) with some \(u^n, n \geq 1 \). Then “unroll” the iterations \((u^0, \ldots, u^n)\) and use automatic differentiation and back-propagation to estimate \(\nabla_K u^n \).

Issues: strange dependence on \(u^0 \), and difficult if the problem is large or requires too many iterations (costs a lot of memory).

Alternative: even more **classical method**: sensivity analysis.
Sensitivity analysis

In a first step we assume that f, g are as smooth as needed. Given K and a perturbation L we consider for t small the saddle-point $(x_t, y_t) := (x(K + tL), y(K + tL))$. We start from the stationarity conditions:

\[
\begin{cases}
(K + tL)^* y_t + \nabla g(x_t) = 0 \\
-(K + tL)x_t + \nabla f^*(y_t) = 0
\end{cases}
\]

to find that, after some easy computation,

\[
\begin{cases}
K^* \eta + D^2 g(x_0) \cdot \xi = -L^* y_0 \\
-K \xi + D^2 f^*(y_0) \cdot \eta = Lx_0
\end{cases}
\]

where $\xi = \lim_{t \to 0} (x_t - x_0)/t$ and $\eta = \lim_{t \to 0} (y_t - y_0)/t.$
Sensitivity analysis

It follows that

\[
\begin{pmatrix}
\xi \\
\eta
\end{pmatrix} = \left(D^2 g(x_0) & K^* \\
-K & D^2 f^*(y_0) \right)^{-1} \begin{pmatrix}
-L^* y_0 \\
L x_0
\end{pmatrix}
\]

and we obtain, using \(\nabla L(K) \cdot L = \langle \nabla \ell(x_0, y_0), (\xi, \eta) \rangle \),

\[
\nabla L(K) \cdot L = \nabla \ell(x_0, y_0)^T \left(D^2 g(x_0) & K^* \\
-K & D^2 f^*(y_0) \right)^{-1} \begin{pmatrix}
-L^* y_0 \\
L x_0
\end{pmatrix}
\]
Sensitivity analysis

and we obtain, using \(\nabla \mathcal{L}(K) \cdot L = \langle \nabla \ell(x_0, y_0), (\xi, \eta) \rangle \),

\[
\nabla \mathcal{L}(K) \cdot L = \nabla \ell(x_0, y_0)^T \begin{pmatrix} D^2g(x_0) & K^* \\ -K & D^2f^*(y_0) \end{pmatrix}^{-1} \begin{pmatrix} -L^*y_0 \\ Lx_0 \end{pmatrix}
\]

\((-X, Y)^T \)

→ Introduce adjoint states \((X, Y)\) so that

\[
\nabla \mathcal{L}(K) \cdot L = \langle X, L^*y_0 \rangle + \langle Y, Lx_0 \rangle ,
\]

that is,

\[
\nabla \mathcal{L}(K) = y_0 \otimes X + Y \otimes x_0
\]
Adjoint states

Now, as usual, the adjoint states do not require the knowledge of L (otherwise they would be useless). They satisfy:

$$\begin{cases}
D^2g(x_0)X + K^*Y + \nabla_x \ell(x_0, y_0) = 0 \\
-KX + D^2 f^*(y_0)Y - \nabla_y \ell(x_0, y_0) = 0
\end{cases}$$

and solve the quadratic saddle-point problem:

$$\min_X \sup_Y \langle KX, Y \rangle + \frac{1}{2} \langle D^2g(x_0)X, X \rangle - \frac{1}{2} \langle D^2 f^*(y_0)Y, Y \rangle
\quad + \langle \nabla_x \ell(x_0, y_0), X \rangle + \langle \nabla_y \ell(x_0, y_0), Y \rangle$$
Naive Algorithm

Observations: a standard iterative algorithm to solve this problem would rely on iterations such as

\[X^{k+1} = (I + \tau D^2 g(x_0))^{-1}(X^k - \tau KY^k - \tau \nabla_x \ell(x_0, y_0)), \]

requiring the knowledge of the solution \((x_0, y_0)\) and to compute the (linear) proximity operator

\[(I + \tau D^2 g(x_0))^{-1}. \]

Yet...
Naive Algorithm

Observations: a standard iterative algorithm to solve this problem would rely on iterations such as

\[X^{k+1} = (I + \tau D^2 g(x_0))^{-1}(X^k - \tau K Y^k - \tau \nabla_x \ell(x_0, y_0)), \]

requiring the knowledge of the solution \((x_0, y_0)\) and to compute the (linear) proximity operator

\[(I + \tau D^2 g(x_0))^{-1}. \]

Yet...

- One has that: \(\nabla \text{prox}_{\tau g}(x) = (I + \tau D^2 g(\text{prox}_{\tau g}(x)))^{-1} \);
- One can run in parallel an algorithm for computing \((x_0, y_0)\) and the algorithm for \(X, Y\).
This is the basic idea of a “Piggyback” differentiation algorithm (cf Griewank-Faure 2003, designed to evaluate the derivative of fixed points with respect to some parameters). In this case, one would run in parallel, for appropriate choices of $\tau, \sigma, \theta \in [0, 1]$, primal-dual iterations (cf [CP11]) of the form:

$$\begin{align*}
x^{k+1} &= \text{prox}_{\tau g}(x^k - \tau Ky^k) \\
X^{k+1} &= \nabla \text{prox}_{\tau g}(x^k - \tau Ky^k) \cdot \left(X^k - \tau KY^k - \tau \nabla_x \ell(x^k, y^k) \right)
\end{align*}$$
Piggyback Algorithm

First choose starting points \((x^0, y^0, X^0, Y^0)\), then for each \(k \geq 0\):

1. \(\tilde{x} = x^k - \tau K^* y^k, \quad \tilde{X} = X^k - \tau (K^* Y^k + \nabla_x \ell(x^k, y^k))\);

2. compute using automatic differentiation \(x^{k+1} = \text{prox}_{\tau g}(\tilde{x}),
 X^{k+1} = \nabla \text{prox}_{\tau g}(\tilde{x}) \cdot \tilde{X}\);

3. \(\bar{x}^{k+1} := x^{k+1} + \theta(x^{k+1} - x^k), \quad \bar{X}^{k+1} := X^{k+1} + \theta(X^{k+1} - X^k)\);

4. \(\tilde{y} = y^k + \sigma K \bar{x}^{k+1}, \quad \tilde{Y} = Y^k + \sigma (K \bar{X}^{k+1} + \nabla_y \ell(x^k, y^k))\);

5. compute using a.d. again \(y^{k+1} = \text{prox}_{\sigma f^*}(\tilde{y}),
 Y^{k+1} = \nabla \text{prox}_{\sigma f^*}(\tilde{y}) \cdot \tilde{Y}\);

6. return to 1.
Theoretical results

Our first result shows the method makes sense for less regular functions f^*, g:

Theorem Assume that g, f^* are strongly convex and let (x, y, X, Y) be a fixed point of the algorithm, for which $\nabla \text{prox}_{\tau g}(x - \tau K^* y)$ and $\nabla \text{prox}_{\tau f^*}(y + \sigma K x)$ exist. Then L is differentiable at K and $\nabla L(K) = y \otimes X + Y \otimes x$.

Of course the assumptions imply that g^*, f are $C^{1,1}$. The convergence of the algorithm requires slightly more regularity:

Theorem Assume that g, f^* are strongly convex, and in addition that g^*, f are locally $C^{2,\alpha}$ for some $\alpha > 0$. Then for τ, σ, θ properly chosen, the iterates (x^k, y^k, X^k, Y^K) converge linearly to a fixed point where the previous Thm holds.
Why does it work?

- Relies on Moreau’s identity which shows, for instance, that

\[\nabla \text{prox}_{\tau g}(x + \tau p) = I - \nabla \text{prox}_{\frac{1}{\tau} g^*}(x + \tau p). \]

(remember also \(\nabla \text{prox}_{\tau g}(x) = (I + \tau D^2 g(\text{prox}_{\tau g}(x)))^{-1} \))
Why does it work?

- Relies on Moreau’s identity which shows, for instance, that
 \[\nabla \text{prox}_{\tau g}(x + \tau p) = I - \nabla \text{prox}_{\frac{1}{\tau} g^*}(x + \tau p). \]
 (remember also \(\nabla \text{prox}_{\tau g}(x) = (I + \tau D^2 g(\text{prox}_{\tau g}(x)))^{-1} \))

- Relies on Moreau-Yosida regularization, through formulas such as
 \[\nabla \text{prox}_{\tau g}(x) = D^2(g^*) \frac{1}{\tau} \left(\frac{x}{\tau} \right) \]
 (in particular if \(g^* \) is \(C^{2,\alpha} \) then \(\text{prox}_{\tau g} \) is \(C^{1,\alpha} \)).
Why does it work?

▶ Relies on Moreau’s identity which shows, for instance, that
\[\nabla \text{prox}_{\tau g}(x + \tau p) = I - \nabla \text{prox}_{\frac{1}{\tau} g^*}(x + \tau p). \]
(remember also \(\nabla \text{prox}_{\tau g}(x) = (I + \tau D^2 g(\text{prox}_{\tau g}(x)))^{-1} \))

▶ Relies on Moreau-Yosida regularization, through formulas such as
\[\nabla \text{prox}_{\tau g}(x) = D^2(g^*)_{\frac{1}{\tau}} \left(\frac{X}{\tau} \right) \]
(in particular if \(g^* \) is \(C^{2,\alpha} \) then \(\text{prox}_{\tau g} \) is \(C^{1,\alpha} \)).

▶ The errors between the values of \(\nabla \ell, \nabla \text{prox}_{\tau g} \) at iterates and at the limit points are controlled thanks to the linear convergence of \((x^k, y^k) \) (cf [CP11]). Then, \((X^k, Y^k) \) solve a primal-dual algorithm with errors for which a (less good) linear convergence can also be proved, cf Rasch-C. 2020.
Remarks

- It is not clear that one can easily drop the regularity assumptions, in addition, for the first theorem, even if \texttt{prox} is differentiable a.e., it is not clear that it will be differentiable precisely at some fixed point.

- Interestingly, the same adjoint states can be used to derivate with parameters in \(f, g \) (\(f^*(y, \Theta) \), etc). (But this needs more regularity).
Examples

“Inpainting” of a straight line with ad hoc (top) and learned (bottom) discretizations of the total variation.
Examples

Quality of reconstruction (PSNR) as a function of the angle of the discontinuity. The learning significantly improves the isotropy.
Perspectives

- Applications to learning/classification (but too simple classification problems yield overfitting);
- Understand what is computed for totally nonsmooth/non-strongly convex problems (difficult in general, yet it seems to work).
- Compare with backpropagation? (Inpainting experiments require too many iterations for BP.)
Thank you for your attention