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Outline:

I Some bi-level problems involving total variation minimization;

I Homogenization: case of a loss depending on the value;

I More general losses: adjoint states;

I “Piggyback [style] algorithm” and results.



Related work

I A lot of literature on parameter learning for TV-regularization
problems (for one parameter but also with varying
parameters), usually for one image;

I Most papers focus on the continuous setting and then propose
to solve an adjoint equation;

I Our work is more “discrete” and focuses on the algorithms
(but of course, some similarities).

[Dong, Hintermüller, Rincon-Camacho 2010] ([Bredies et al 2013
for TGV]) [Kunisch-Pock 2013] [De Los Reyes, Schönlieb,
Valkonen 2015], [Calatroni et al 2015-17] [Hintermüller-Rautenberg
17], [Hintermüller-et al 17], [Hintermüller-Papafistoros HNA 2019]



Starting point

Improve or learn discrete surface energies / total variations so that

I They are faithful, possibly precise approximations of the
continuous T.V.;

I They behave “well” at the discrete level (isotropy,
sharpness...)



0. Typical model:

Focus on problems of the form:

min
u=u0 ∂Ω

∫
Ω
|Du|

(
or +

∫
Ω
|u − g |2dx

)
where u0 ∈ {0, 1}, so that this is equivalent to finding sets E with
lowest perimeter and boundary condition χE = u0. One expects to
find (in general) sharp solutions u ∈ {0, 1} a.e.
Discretize: One minimizes in practice a convex problem of the form

min
ui=u0

i ,i∈I 0
Fh(ui ) : u ∈ RN(h)

where (ui )
N(h)
i=1 is supposed to be a discrete representation of u at

scale h > 0, and Fh approximates the total variation in some sense.



Typical model:

In practice, depending on the form of Fh, one can expect more or
less “nice” or “precise” results (sharp, isotropic, or not...)
⇒ could one “learn” the “best” one (or a better one)?



Typical model:

Here the discrete problem has the form

min
u∈Cu

sup
w∈Cw

〈w ,Du〉

for D some discrete derivative, and where Cu and Cw are convex
sets. Simpler versions include

min
u∈Cu

sup
w∈Cw

〈w ,Du〉+
1

2
‖u − g‖2 (“ROF”)

which is strongly convex wr u, or a “regularized” variant:

min
u∈Cu

sup
w∈Cw

〈w ,Du〉 − ε

2
‖w‖2 +

ε

2
‖u‖2

for ε > 0 a small parameter, which is strongly convex wr both u
and w .



I. Easier case

Let us consider for a start an “easy” case. We will try to build an
“isotropic-`1” discretization. Assume we are given a discrete 2D
image ui ,j on a square grid, we define a graph total variation as∑

(i ,j),(i ′,j ′)

α(i ,j),(i ′,j ′)(ui ′,j ′ − ui ,j)
+

(here x+ = max{x , 0}). The simplest form would be:∑
i ,j

α+
i+ 1

2
,j

(ui+1,j − ui ,j)
+ + α−

i+ 1
2
,j

(ui ,j − ui+1,j)
+

+ α+
i ,j+ 1

2

(ui ,j+1 − ui ,j)
+ + α−

i ,j+ 1
2

(ui ,j − ui ,j+1)+

which involves only horizontal/vertical directions.



An easy case

Clearly, if all the α’s are 1, this is an “`1” discretization of the
total variation, which in a continuum limit would approximate the
anisotropic functional

∫
|∂1u|+ |∂2u|, and produces block artefacts.

On the other hand, it is very easy and fast to optimize (graph cuts,
or horizontal/vertical splitting...)



An easy case: homogenization

The isotropy can be improved by “homogenization”. In practice,
the idea is to use periodic oscillating weights α± which produce, in
the continuum limit, an “effective surface tension” given by an
exact “cell formula”, defined for ν ∈ R2,

φ(ν) = min
u

{ ∑
(i ,j)∈Y

α+
i+ 1

2
,j

(ui+1,j − ui ,j)
+ + α−

i+ 1
2
,j

(ui ,j − ui+1,j)
+

+ α+
i ,j+ 1

2

(ui ,j+1 − ui ,j)
+ + α−

i ,j+ 1
2

(ui ,j − ui ,j+1)+ :

ui ,j − ν ·
(
i
j

)
Y -periodic

}
where here Y is a periodicity cell of the form
{1, . . . , n} × {1, . . . ,m}. (Typically, m = n = 2, 3, 4....)



An easy case: homogenization

... and one would be interested in solving:

min
(α)
L(α) :=

1

2

k∑
i=1

|φ(νi )− 1|2

where the “loss” L depends on α through the dependence of φ(·)
on α and νi are a set of given directions.
So one needs to estimate ∇(α)φ(νi ), for each direction νi .



Derivative of the energy

In our case the minimal energy φ(ν) can be found by solving a
saddle-point problem:

φ(ν) = min
u∈Ci (ν)

sup
w∈Cw

〈D(α)u,w〉

−ε
2
‖w‖2 +

ε

2

∥∥∥u − (
i
j

)
· ν
∥∥∥2

which we regularize in order to have a unique solution
(u(D),w(D)) for a given discrete derivative operator D.
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Derivative of the energy

Thanks to the regularization one easily sees that

I D 7→ (u(D),w(D)) is continuous and

I D 7→ φ(ν) =: Eν(D) is C 1,1.

Indeed:
sup
w∈Cw

〈Du,w〉 − ε

2
‖w‖2

I is convex with (1/ε)-Lipschitz gradient with respect to Du

I is convex with (C/ε)-Lipschitz gradient with respect to D in a
neighborhood of D, for C > ‖u(D)‖2.

I so its infu has Hessian bounded from above.

I symetrically (taking first infu then supw ) one gets a bound
from below.
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Derivative of the energy

Then, computing the differential is quite standard (one can for
instance estimate Eν(D + tL), t small, from above and below using
the optimal values ut ,wt , and pass to the limit...) and one finds

∇DEν(D) = w(D)⊗ u(D)

So here one just needs to solve (with some precision) the saddle
point to evaluate the derivative from the optimal solutions (u,w).
Then one can implement a gradient descent and optimize the main
criterion L(α).

Possible extension: smooth only wr u or w . Then the energy will
still be either semi-concave or semi-convex and one can evaluate
the (sub/super)gradient in the same way.
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II. More general losses

Up to now the loss was of the form L(D) = `(E(D)).
Now, what about a more general loss L(D) := `(u(D),w(D)) for
(u,w) the saddle-point?
Typical example is minD `(u(D)), with u solving

min
u
|Du|1 +

‖u − g‖2
2

2
,

D is in a class of operator realizing a consistent discretization of
the total variation, and ` measures the discrepancy between u(D)
and a “true solution” (for instance, exact continuous solution),
cf C-Pock 2020/21.



General model

So the idea is to consider a generic bilinear saddle-point problem:

min
x

sup
y

g(x) + 〈Kx , y〉 − f ∗(y)

with g , f ∗ strongly convex so that (x(K ), y(K )) is uniquely defined
(and continuous). How to differentiate wr K?

Classical method (now): Implement a 1st order algorithm to
approximate u(K ) with some un, n ≥ 1. Then “unroll” the
iterations (u0, . . . , un) and use automatic differentiation and
back-propagation to estimate ∇Ku

n.
Issues: strange dependence on u0, and difficult if the problem is
large or requires too many iterations (costs a lot of memory).

Alternative: even more classical method: sensivity analysis.
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Sensivity analysis

In a first step we assume that f , g are as smooth as needed.
Given K and a perturbation L we consider for t small the
saddle-point (xt , yt) := (x(K+tL), y(K+tL)). We start from the
stationarity conditions:{

(K + tL)∗yt +∇g(xt) = 0

−(K + tL)xt +∇f ∗(yt) = 0

to find that, after some easy computation,{
K ∗η + D2g(x0) · ξ = −L∗y0

−Kξ + D2f ∗(y0) · η = Lx0

where ξ = limt→0(xt − x0)/t and η = limt→0(yt − y0)/t.



Sensivity analysis

It follows that(
ξ
η

)
=

(
D2g(x0) K ∗

−K D2f ∗(y0)

)−1(−L∗y0

Lx0

)
and we obtain, using ∇L(K ) · L = 〈∇`(x0, y0), (ξ, η)〉,

∇L(K ) · L = ∇`(x0, y0)T
(
D2g(x0) K ∗

−K D2f ∗(y0)

)−1(−L∗y0

Lx0

)



Sensivity analysis

and we obtain, using ∇L(K ) · L = 〈∇`(x0, y0), (ξ, η)〉,

∇L(K ) · L = ∇`(x0, y0)T
(
D2g(x0) K ∗

−K D2f ∗(y0)

)−1

︸ ︷︷ ︸
(−X ,Y )T

(
−L∗y0

Lx0

)

→ Introduce adjoint states (X ,Y ) so that

∇L(K ) · L = 〈X , L∗y0〉+ 〈Y , Lx0〉 ,

that is ,
∇L(K ) = y0 ⊗ X + Y ⊗ x0



Adjoint states

Now, as usual, the adjoint states do not require the knowledge of L
(otherwise they would be useless). They satisfy:{

D2g(x0)X + K ∗Y +∇x`(x0, y0) = 0

−KX + D2f ∗(y0)Y −∇y `(x0, y0) = 0

and solve the quadratic saddle-point problem:

min
X

sup
Y
〈KX ,Y 〉+

1

2

〈
D2g(x0)X ,X

〉
− 1

2

〈
D2f ∗(y0)Y ,Y

〉
+ 〈∇x`(x0, y0),X 〉+ 〈∇y `(x0, y0),Y 〉



Naive Algorithm

Observations: a standard iterative algorithm to solve this problem
would rely on iterations such as

X k+1 = (I + τD2g(x0))−1(X k − τKY k − τ∇x`(x0, y0)),

requiring the knowledge of the solution (x0, y0) and to compute
the (linear) proximity operator

(I + τD2g(x0))−1.

Yet...

I One has that: ∇proxτg (x) = (I + τD2g(proxτg (x)))−1;

I One can run in parallel an algorithm for computing (x0, y0)
and the algorithm for X ,Y .



Naive Algorithm

Observations: a standard iterative algorithm to solve this problem
would rely on iterations such as

X k+1 = (I + τD2g(x0))−1(X k − τKY k − τ∇x`(x0, y0)),

requiring the knowledge of the solution (x0, y0) and to compute
the (linear) proximity operator

(I + τD2g(x0))−1.

Yet...

I One has that: ∇proxτg (x) = (I + τD2g(proxτg (x)))−1;

I One can run in parallel an algorithm for computing (x0, y0)
and the algorithm for X ,Y .



Piggyback Algorithm

This is the basic idea of a “Piggyback” differentiation algorithm
(cf Griewank-Faure 2003, designed to evaluate the derivative of
fixed points with respect to some parameters). In this case, one
would run in parallel, for appropriate choices of τ, σ, θ ∈ [0, 1],
primal-dual iterations (cf [CP11]) of the form:{
xk+1 = proxτg (xk − τKyk)

X k+1 = ∇proxτg (xk − τKyk) · (X k − τKY k − τ∇x`(x
k , yk))



Piggyback Algorithm

First choose starting points (x0, y0,X 0,Y 0), then for each k ≥ 0:

1. x̃ = xk − τK ∗yk , X̃ = X k − τ(K ∗Y k +∇x`(x
k , yk));

2. compute using automatic differentiation xk+1 = proxτg (x̃),

X k+1 = ∇proxτg (x̃) · X̃ ;

3. x̄k+1 := xk+1 +θ(xk+1−xk), X̄ k+1 := X k+1 +θ(X k+1−X k),

4. ỹ = yk + σKx̄k+1, Ỹ = Y k + σ(KX̄ k+1 +∇y `(x
k , yk));

5. compute using a.d. again yk+1 = proxσf ∗(ỹ),
Y k+1 = ∇proxσf ∗(ỹ) · Ỹ ;

6. return to 1.



Theoretical results

Our first result shows the method makes sense for less regular
functions f ∗, g :

Theorem Assume that g , f ∗ are strongly convex and let
(x , y ,X ,Y ) be a fixed point of the algorithm, for which
∇proxτg (x − τK ∗y) and ∇proxτ f ∗(y + σKx) exist. Then L is
differentiable at K and ∇L(K ) = y ⊗ X + Y ⊗ x.

Of course the assumptions imply that g∗, f are C 1,1. The
convergence of the algorithm requires slightly more regularity:

Theorem Assume that g , f ∗ are strongly convex, and in addition
that g∗, f are locally C 2,α for some α > 0. Then for τ, σ, θ
properly chosen, the iterates (xk , yk ,X k ,Y K ) converge linearly to
a fixed point where the previous Thm holds.



Why does it work?

I Relies on Moreau’s identity which shows, for instance, that

∇proxτg (x + τp) = I −∇prox 1
τ
g∗(x + τp).

(remember also ∇proxτg (x) = (I + τD2g(proxτg (x)))−1)

I Relies on Moreau-Yosida regularization, through formulas such
as

∇proxτg (x) = D2(g∗) 1
τ

(x
τ

)
(in particular if g∗ is C 2,α then proxτg is C 1,α).

I The errors between the values of ∇`, ∇proxτg at iterates and
at the limit points are controlled thanks to the linear
convergence of (xk , yk) (cf [CP11]). Then, (X k ,Y k) solve a
primal-dual algorithm with errors for which a (less good)
linear convergence can also be proved, cf Rasch-C. 2020.
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Remarks

I It is not clear that one can easily drop the regularity
assumptions, in addition, for the first theorem, even if prox is
differentiable a.e., it is not clear that it will be differentiable
precisely at some fixed point.

I Interestingly, the same adjoint states can be used to derivate
with parameters in f , g (f ∗(y ,Θ), etc). (But this needs more
regularity).



Examples

Target FD RT CD L = 2 (s) L = 3 (s) L = 4 (s) L = 8 (s)

Target FD RT CD L = 2 (s) L = 3 (s) L = 4 (s) L = 8 (s)

“Inpainting” of a straight line with ad hoc (top) and learned
(bottom) discretizations of the total variation.
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Quality of reconstruction (PSNR) as a function of the angle of the
discontinuity. The learning significantly improves the isotropy.



Perspectives

I Applications to learning/classification (but too simple
classification problems yield overfitting);

I Understand what is computed for totally
nonsmooth/non-strongly convex problems (difficult in general,
yet it seems to work).

I Compare with backpropagation? (Inpainting experiments
require too many iterations for BP.)



Thank you for your attention


