Dual Randomized Coordinate Descent Method for Solving a Class of Nonconvex Problems

Amir Beck

School of Mathematical Sciences, Tel Aviv University Joint work with Marc Teboulle

One World Optimization Seminar, September 7, 2020

The Main Model

$$
\text { (P) } \quad \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\},
$$

- $\mathbf{A} \in \mathbb{R}^{n \times d}$
- $f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ proper, closed, strongly convex;
- $g: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$ proper closed convex with a compact domain;
- $\operatorname{dom}(g) \subseteq \operatorname{dom}(h)$, where $h(\mathbf{x}) \equiv f(\mathbf{A x})$.
convention: $\infty-\infty=-\infty$

The Main Model

$$
\text { (P) } \quad \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\},
$$

- $\mathbf{A} \in \mathbb{R}^{n \times d}$
- $f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ proper, closed, strongly convex;
- $g: \mathbb{R}^{d} \rightarrow(-\infty, \infty]$ proper closed convex with a compact domain;
- $\operatorname{dom}(g) \subseteq \operatorname{dom}(h)$, where $h(\mathbf{x}) \equiv f(\mathbf{A x})$.
convention: $\infty-\infty=-\infty$

MAIN GOALS:

- improved optimality conditions
- develop randomized dual-based decomposition methods

Three PCA Prototype Problems MODEL I: "standard PCA"

Given n points $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{d}$, find a normalized vector $\mathbf{x} \in \mathbb{R}^{d}$ for which the projected data $\mathbf{a}_{1}^{T} \mathbf{x}, \mathbf{a}_{2}^{T} \mathbf{x}, \ldots, \mathbf{a}_{n}^{T} \mathbf{x}$ has maximum variance

Three PCA Prototype Problems

MODEL I: "standard PCA"
Given n points $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{d}$, find a normalized vector $\mathbf{x} \in \mathbb{R}^{d}$ for which the projected data $\mathbf{a}_{1}^{T} \mathbf{x}, \mathbf{a}_{2}^{T} \mathbf{x}, \ldots, \mathbf{a}_{n}^{T} \mathbf{x}$ has maximum variance

- Under the assumption that $\sum_{i=1}^{n} \mathbf{a}_{i}=\mathbf{0}$, the problem is

$$
\max _{\|\mathbf{x}\|_{2}=1} \frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{a}_{i}^{T} \mathbf{x}\right)^{2}
$$

- Denote $\mathbf{A}=\left(\begin{array}{c}\mathbf{a}_{1}^{T} \\ \vdots \\ \mathbf{a}_{n}^{T}\end{array}\right) \in \mathbb{R}^{n \times d}$. Then the problem is

$$
\text { (PCA) } \max _{\|\mathbf{x}\|_{2} \leq 1} \frac{1}{2}\|\mathbf{A x}\|_{2}^{2}
$$

- Fits model (P) with $f(\cdot)=\frac{1}{2}\|\cdot\|_{2}^{2}$ and $g=\delta_{B_{2}[0,1]}$.

Model II: Sparse PCA

Additional information: sought vector is sparse.

- [d'Aspremont et. al. 05']

$$
\text { (SPCA) } \quad \max \left\{0.5\|\mathbf{A} \mathbf{x}\|_{2}^{2}:\|\mathbf{x}\|_{2} \leq 1,\|\mathbf{x}\|_{0} \leq s\right\}
$$

$$
\|\mathbf{x}\|_{0} \equiv \#\left\{i: x_{i} \neq 0\right\}, s \leq d
$$

DOES NOT FIT MODEL (P) (feasible set nonconvex)

Model II: Sparse PCA

Additional information: sought vector is sparse.

- [d'Aspremont et. al. 05']

$$
\text { (SPCA) } \quad \max \left\{0.5\|\mathbf{A} \mathbf{x}\|_{2}^{2}:\|\mathbf{x}\|_{2} \leq 1,\|\mathbf{x}\|_{0} \leq s\right\}
$$

$$
\|\mathbf{x}\|_{0} \equiv \#\left\{i: x_{i} \neq 0\right\}, s \leq d
$$

DOES NOT FIT MODEL (P) (feasible set nonconvex)

- BUT... equivalent to

$$
\max \left\{0.5\|\mathbf{A} \mathbf{x}\|_{2}^{2}: \mathbf{x} \in \operatorname{conv}\left(B_{2}[\mathbf{0}, 1] \cap C_{s}\right)\right\}
$$

$$
C_{s}=\left\{\mathbf{x}:\|\mathbf{x}\|_{0} \leq s\right\} .
$$

- Fits model (P) with $f(\cdot)=\frac{1}{2}\|\cdot\|_{2}^{2}$ and $g=\delta_{\operatorname{conv}\left(B_{2}[0,1] \cap C_{s}\right)}$.

Model III: Square Root PCA second interpretation of PCA (pearson 1901):

```
Given }\mp@subsup{\mathbf{a}}{1}{},\ldots,\mp@subsup{\mathbf{a}}{n}{}\in\mp@subsup{\mathbb{R}}{}{d}\mathrm{ , find }\mathbf{x}
\mp@subsup{\mathbb{R}}{}{d},|\mathbf{x}\mp@subsup{|}{2}{}=1\mathrm{ for which the sum of}
distances}\mp@subsup{}{}{2}\mathrm{ of }\mp@subsup{\mathbf{a}}{1}{},\mp@subsup{\mathbf{a}}{2}{},\ldots,\mp@subsup{\mathbf{a}}{n}{}\mathrm{ to }\operatorname{sp}(\mathbf{x} is minimal.
```


Model III: Square Root PCA second interpretation of PCA (pearson 1901):

Given $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{d}$, find $\mathbf{x} \in$ $\mathbb{R}^{d},\|\mathbf{x}\|_{2}=1$ for which the sum of distances ${ }^{2}$ of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ to $\operatorname{sp}(\mathbf{x})$ is minimal.

$$
\left(\mathrm{PCA}^{\prime}\right) \min _{\|\mathbf{x}\|_{2}=1} \sum_{i=1}^{n}\left\|\mathbf{a}_{i}-\left(\mathbf{a}_{i}^{\top} \mathbf{x}\right) \mathbf{x}\right\|_{2}^{2} .
$$

SAME RESULT AS PCA!

Model III: Square Root PCA second interpretation of PCA (pearson 1901):

Given $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{d}$, find $\mathbf{x} \in$ $\mathbb{R}^{d},\|\mathbf{x}\|_{2}=1$ for which the sum of distances ${ }^{2}$ of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ to $\operatorname{sp}(\mathbf{x})$ is minimal.

$$
\left(\mathrm{PCA}^{\prime}\right) \min _{\|\mathbf{x}\|_{2}=1} \sum_{i=1}^{n}\left\|\mathbf{a}_{i}-\left(\mathbf{a}_{i}^{T} \mathbf{x}\right) \mathbf{x}\right\|_{2}^{2}
$$

SAME RESULT AS PCA!

- A robust version of $\left(\mathrm{PCA}^{\prime}\right): \min _{\|\mathbf{x}\|_{2}=1} \sum_{i=1}^{n}\left\|\mathbf{a}_{i}-\left(\mathbf{a}_{i}^{T} \mathbf{x}\right) \mathbf{x}\right\|_{2}$,

Model III: Square Root PCA second interpretation of PCA (pearson 1901):

Given $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{d}$, find $\mathbf{x} \in$ $\mathbb{R}^{d},\|\mathbf{x}\|_{2}=1$ for which the sum of distances ${ }^{2}$ of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ to $\operatorname{sp}(\mathbf{x})$ is minimal.

$$
\text { (PCA') } \min _{\|\mathbf{x}\|_{2}=1} \sum_{i=1}^{n}\left\|\mathbf{a}_{i}-\left(\mathbf{a}_{i}^{\top} \mathbf{x}\right) \mathbf{x}\right\|_{2}^{2} .
$$

SAME RESULT AS PCA!

- A robust version of (PCA'): $\min _{\|\times\|_{2}=1} \sum_{i=1}^{n}\left\|\mathbf{a}_{i}-\left(\mathbf{a}_{i}^{T} \mathbf{x}\right) \mathbf{x}\right\|_{2}$,
- $\Leftrightarrow \min _{\|\times\|_{2}=1} \sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle^{2}}$

Model III: Square Root PCA second interpretation of PCA (pearson 1901):

Given $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n} \in \mathbb{R}^{d}$, find $\mathbf{x} \in$ $\mathbb{R}^{d},\|\mathbf{x}\|_{2}=1$ for which the sum of distances ${ }^{2}$ of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ to $\operatorname{sp}(\mathbf{x})$ is minimal.

$$
\left(\text { PCA }^{\prime}\right) \min _{\|\mathbf{x}\|_{2}=1} \sum_{i=1}^{n}\left\|\mathbf{a}_{i}-\left(\mathbf{a}_{i}^{T} \mathbf{x}\right) \mathbf{x}\right\|_{2}^{2} .
$$

SAME RESULT AS PCA!

- A robust version of (PCA'): $\min _{\|\times\|_{2}=1} \sum_{i=1}^{n}\left\|\mathbf{a}_{i}-\left(\mathbf{a}_{i}^{T} \mathbf{x}\right) \mathbf{x}\right\|_{2}$,
- $\Leftrightarrow \min _{\|x\|_{2}=1} \sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle^{2}}$
- $\Leftrightarrow \min _{\|\mathbf{x}\|_{2} \leq 1} \sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle^{2}}$ (by concavity)

NOT SMOOTH OVER THE DOMAIN. We will consider a smooth approximation (a better reason in the sequal)

Model III: Square Root PCA

$$
(\mathrm{SRPCA}) \max _{\|\mathbf{x}\|_{2} \leq 1}-\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle^{2}+\varepsilon^{2}}
$$

Fits model (P) with

$$
f(\mathbf{z})=\left\{\begin{array}{ll}
-\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}+\varepsilon^{2}-z_{i}^{2}} & \left|z_{i}\right| \leq \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}+\varepsilon^{2}}, \\
\infty & \text { else, }
\end{array} \quad g=\delta_{B_{2}[0,1]}\right.
$$

Note: the inclusion $\operatorname{dom}(g) \subseteq \operatorname{dom}(f \circ \mathbf{A})$ holds.

Three PCA Models

name	$f(\mathbf{x})$	$g(\mathbf{x})$				
PCA	$\frac{1}{2}\\|\mathbf{x}\\|_{2}^{2}$	$\delta_{B_{2}[\mathbf{0}, 1]}(\mathbf{x})$				
SPCA	$\frac{1}{2}\\|\mathbf{x}\\|_{2}^{2}$	$\delta_{\operatorname{conv}\left(B_{2}[\mathbf{0}, 1] \cap C_{s}\right)}(\mathbf{x})$				
SRPCA	$-\sum_{i=1}^{n} \sqrt{\left\\|\mathbf{a}_{i}\right\\|_{2}^{2}+\varepsilon^{2}-x_{i}^{2}}$ $\left(\left\|x_{i}\right\| \leq \sqrt{\left\\|\mathbf{a}_{i}\right\\|_{2}^{2}+\varepsilon^{2}}\right)$	$\delta_{B_{2}[\mathbf{0}, 1]}(\mathbf{x})$				

The two options for f are strongly convex

Optimality Conditions

- Recall the main model: (P) $\max _{\mathbf{x}_{\in \mathbb{R}^{d}}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\}$
- instance of DC optimization [review - Horst, Thoai '99]

General DC problem:

$$
\max _{\mathbf{x}} s(\mathbf{x})-t(\mathbf{x})
$$

s, t - extended real-valued convex functions, $\operatorname{dom}(t) \subseteq \operatorname{dom}(s)$

Optimality Conditions

- Recall the main model: (P) $\max _{\mathbf{x}_{\in \mathbb{R}^{d}}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\}$
- instance of DC optimization [review - Horst, Thoai '99]

General DC problem:

$$
\max _{\mathbf{x}} s(\mathbf{x})-t(\mathbf{x})
$$

s, t - extended real-valued convex functions, $\operatorname{dom}(t) \subseteq \operatorname{dom}(s)$
Most fundamental necessary optimality condition: CRITICALITY

$$
\overline{\mathbf{x}} \text { opt. } \Rightarrow \underbrace{\partial s(\overline{\mathbf{x}}) \cap \partial t(\overline{\mathbf{x}}) \neq \emptyset}_{\text {criticality }}
$$

Optimality Conditions

- Recall the main model: (P) $\max _{\mathbf{x}_{\in \mathbb{R}^{d}}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\}$
- instance of DC optimization [review - Horst, Thoai '99]

General DC problem:

$$
\max _{\mathbf{x}} s(\mathbf{x})-t(\mathbf{x})
$$

s, t - extended real-valued convex functions, $\operatorname{dom}(t) \subseteq \operatorname{dom}(s)$
Most fundamental necessary optimality condition: CRITICALITY

$$
\overline{\mathbf{x}} \text { opt. } \Rightarrow \underbrace{\partial s(\overline{\mathbf{x}}) \cap \partial t(\overline{\mathbf{x}}) \neq \emptyset}
$$

- can be replaced by $\partial s(\overline{\mathbf{x}}) \subseteq \partial t(\overline{\mathbf{x}})$
- another condition is stationarity $=$ lack of feasible ascent directions.
- In general, criticality is weaker than stationarity. More results [Pang et. al. '17]

Stationarity vs. Criticality

The function $2|y|-\frac{y^{2}}{2}$ has three critical points $y=-2,0,2$.
Among them $y=-2,2$ are stationary points

Back to the Main Model

$$
\text { (P) } \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\},
$$

- Criticality. $\mathbf{A}^{T} \partial f(\mathbf{A} \overline{\mathbf{x}}) \cap \partial g(\overline{\mathbf{x}}) \neq \emptyset$
- In all three PCA models, f is continuously differentiable over $\operatorname{dom}(g)$ and criticality \Longleftrightarrow stationarity.

Back to the Main Model

$$
\text { (P) } \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\},
$$

- Criticality. $\mathbf{A}^{T} \partial f(\mathbf{A} \overline{\mathbf{x}}) \cap \partial g(\overline{\mathbf{x}}) \neq \emptyset$
- In all three PCA models, f is continuously differentiable over $\operatorname{dom}(g)$ and criticality \Longleftrightarrow stationarity.
- Can we do better?

Back to the Main Model

$$
\text { (P) } \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\},
$$

- Criticality. $\mathbf{A}^{T} \partial f(\mathbf{A} \overline{\mathbf{x}}) \cap \partial g(\overline{\mathbf{x}}) \neq \emptyset$
- In all three PCA models, f is continuously differentiable over $\operatorname{dom}(g)$ and criticality \Longleftrightarrow stationarity.
- Can we do better? YES - through duality.

Toland Duality

 main model:$$
\text { (P) } \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\}
$$

Toland Duality

 main model:$$
\text { (P) } \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\}
$$

- use the fact that $f(\mathbf{A x})=f^{* *}(\mathbf{A} \mathbf{x})=\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})\right\}$

Toland Duality

 main model:$$
\text { (P) } \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\}
$$

- use the fact that $f(\mathbf{A} \mathbf{x})=f^{* *}(\mathbf{A} \mathbf{x})=\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})\right\}$
$-\max _{\mathbf{x} \in \mathbb{R}^{d}} \max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})-g(\mathbf{x})\right\}$.

Toland Duality

 main model:$$
\text { (P) } \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\}
$$

- use the fact that $f(\mathbf{A} \mathbf{x})=f^{* *}(\mathbf{A} \mathbf{x})=\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})\right\}$
- $\max _{\mathbf{x} \in \mathbb{R}^{d}} \max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})-g(\mathbf{x})\right\}$.
$-\max _{\mathbf{y} \in \mathbb{R}^{n}} \max _{\mathbf{x} \in \mathbb{R}^{d}}\left\{\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})-g(\mathbf{x})\right\}$.

Toland Duality

 main model:(P) $\max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\}$

- use the fact that $f(\mathbf{A x})=\boldsymbol{f}^{* *}(\mathbf{A} \mathbf{x})=\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\langle\mathbf{A x}, \mathbf{y}\rangle-\boldsymbol{f}^{*}(\mathbf{y})\right\}$
- $\max _{\mathbf{x} \in \mathbb{R}^{d}} \max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})-g(\mathbf{x})\right\}$.
- $\max _{\mathbf{y} \in \mathbb{R}^{n}} \max _{\mathbf{x} \in \mathbb{R}^{d}}\left\{\langle\mathbf{A x}, \mathbf{y}\rangle-f^{*}(\mathbf{y})-g(\mathbf{x})\right\}$.
- Obtain the Toland dual problem [Toland, '78,'79]:

$$
\text { (D) } \max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{q(\mathbf{y}) \equiv g^{*}\left(\mathbf{A}^{T} \mathbf{y}\right)-f^{*}(\mathbf{y})\right\}
$$

- DC problem (nonconvex)
- f^{*} - also $C^{1,1}, g^{*}$ - real-valued

Duality Examples
 - PCA

$$
\text { (P) } \max _{\|\mathbf{x}\|_{2} \leq 1} 0.5\|\mathbf{A}\|_{2}^{2} \quad \text { (D-PCA) } \max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-\frac{1}{2}\|\mathbf{y}\|_{2}^{2}\right\} \text {. }
$$

Duality Examples

- PCA
(P) $\max _{\|\mathbf{x}\|_{2} \leq 1} 0.5\|\mathbf{A x}\|_{2}^{2}$
(D-PCA) $\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-\frac{1}{2}\|\mathbf{y}\|_{2}^{2}\right\}$.
- sparse PCA
(SPCA) $\max \left\{0.5\|\mathbf{A} \mathbf{x}\|_{2}^{2}: \mathbf{x} \in \operatorname{conv}\left(B_{2}[\mathbf{0}, 1] \cap C_{s}\right)\right\}$
(D-SPCA) $\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\left\|T_{s}\left(\mathbf{A}^{T} \mathbf{y}\right)\right\|_{2}-\frac{1}{2}\|\mathbf{y}\|_{2}^{2}\right\} \cdot\left(T_{s}-\right.$ hard thresholding $)$

Duality Examples

- PCA
(P) $\max _{\|\mathbf{x}\|_{2} \leq 1} 0.5\|\mathbf{A} \mathbf{x}\|_{2}^{2}$
(D-PCA) $\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-\frac{1}{2}\|\mathbf{y}\|_{2}^{2}\right\}$.
- sparse PCA
$(S P C A) \max \left\{0.5\|\mathbf{A x}\|_{2}^{2}: \mathbf{x} \in \operatorname{conv}\left(B_{2}[\mathbf{0}, 1] \cap C_{s}\right)\right\}$
(D-SPCA) $\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\left\|T_{s}\left(\mathbf{A}^{T} \mathbf{y}\right)\right\|_{2}-\frac{1}{2}\|\mathbf{y}\|_{2}^{2}\right\} \cdot\left(T_{s}-\right.$ hard thresholding)
- square-root PCA

$$
\begin{gathered}
\text { (SRPCA) } \max _{\|\mathbf{x}\|_{2} \leq 1}-\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle^{2}+\varepsilon^{2}} . \\
\text { (D-SRPCA) } \max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}+\varepsilon^{2}} \sqrt{y_{i}^{2}+1}\right\} .
\end{gathered}
$$

Primal Dual Relations

global optimality:

- $\overline{\mathbf{y}}$ opt. for $(\mathrm{D}) \Rightarrow \overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ opt. for (P).
- $\overline{\mathbf{x}}$ opt. for $(P) \Rightarrow \overline{\mathbf{y}} \in \partial f(\mathbf{A} \overline{\mathbf{x}})$ opt. for (D).

Primal Dual Relations

global optimality:

- $\overline{\mathbf{y}}$ opt. for $(\mathrm{D}) \Rightarrow \overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ opt. for (P).
- $\overline{\mathbf{x}}$ opt. for $(\mathrm{P}) \Rightarrow \overline{\mathbf{y}} \in \partial f(\mathbf{A} \overline{\mathbf{x}})$ opt. for (D).
optimality conditions:
- $\overline{\mathbf{y}}$ critical pt. of $(\mathrm{D}) \Rightarrow$ any $\overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ s.t. $\nabla f^{*}(\overline{\mathbf{y}})=\mathbf{A} \overline{\mathbf{x}}$ is critical for (P).

Primal Dual Relations

global optimality:

- $\overline{\mathbf{y}}$ opt. for (D) $\Rightarrow \overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{\top} \overline{\mathbf{y}}\right)$ opt. for (P).
- $\overline{\mathbf{x}}$ opt. for $(\mathrm{P}) \Rightarrow \overline{\mathbf{y}} \in \partial f(\mathbf{A} \overline{\mathbf{x}})$ opt. for (D).
optimality conditions:
- $\overline{\mathbf{y}}$ critical pt. of $(\mathrm{D}) \Rightarrow$ any $\overline{\mathbf{x}} \in \partial \mathrm{g}^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ s.t. $\nabla f^{*}(\overline{\mathbf{y}})=\mathbf{A} \overline{\mathbf{x}}$ is critical for (P).
$\overline{\mathbf{y}}$ stationary pt. of $(\mathrm{D}) \Rightarrow \overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ is critical for (P).

Primal Dual Relations

global optimality:

- $\overline{\mathbf{y}}$ opt. for $(\mathrm{D}) \Rightarrow \overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ opt. for (P).
- $\overline{\mathbf{x}}$ opt. for $(P) \Rightarrow \overline{\mathbf{y}} \in \partial f(\mathbf{A} \overline{\mathbf{x}})$ opt. for (D).

optimality conditions:

- $\overline{\mathbf{y}}$ critical pt. of $(\mathrm{D}) \Rightarrow$ any $\overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ s.t. $\nabla f^{*}(\overline{\mathbf{y}})=\mathbf{A} \overline{\mathbf{x}}$ is critical for (P).
$\overline{\mathbf{y}}$ stationary pt. of $(\mathrm{D}) \Rightarrow \overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ is critical for (P).
Definition: $\overline{\mathbf{x}} \in \operatorname{dom}(g)$ is a dual-stationary point of (P) if $\overline{\mathbf{x}} \in$ $\partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ for some stationary point $\overline{\mathbf{y}} \in \mathbb{R}^{m}$ of (D).

Primal Dual Relations

global optimality:

- $\overline{\mathbf{y}}$ opt. for $(\mathrm{D}) \Rightarrow \overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ opt. for (P).
- $\overline{\mathbf{x}}$ opt. for $(P) \Rightarrow \overline{\mathbf{y}} \in \partial f(\mathbf{A} \overline{\mathbf{x}})$ opt. for (D).

optimality conditions:

- $\overline{\mathbf{y}}$ critical pt. of $(\mathrm{D}) \Rightarrow$ any $\overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ s.t. $\nabla f^{*}(\overline{\mathbf{y}})=\mathbf{A} \overline{\mathbf{x}}$ is critical for (P).
- $\overline{\mathbf{y}}$ stationary pt. of $(\mathrm{D}) \Rightarrow \overline{\mathbf{x}} \in \partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ is critical for (P).

Definition: $\overline{\mathbf{x}} \in \operatorname{dom}(g)$ is a dual-stationary point of (P) if $\overline{\mathbf{x}} \in$ $\partial g^{*}\left(\mathbf{A}^{T} \overline{\mathbf{y}}\right)$ for some stationary point $\overline{\mathbf{y}} \in \mathbb{R}^{m}$ of (D).

Result:

OPTIMALITY \Rightarrow DUAL STATIONARITY \Rightarrow CRITICALITY

Example

$$
\left(P_{1}\right) \max _{x_{1}, x_{2}}\left\{\frac{1}{2}\left(x_{1}+x_{2}\right)^{2}:\left|x_{1}\right| \leq 1,\left|x_{2}\right| \leq 1\right\} .
$$

- critical (=stationary points in this case) are

$$
\left\{\left(x_{1}, x_{2}\right)^{T}: x_{1}+x_{2}=0,\left|x_{1}\right| \leq 1,\left|x_{2}\right| \leq 1\right\} \cup\left\{(-1,-1)^{T},(1,1)^{T}\right\} .
$$

- dual stationary pts. are $(-1,-1)^{T},(1,1)^{T}$, which are the global optimal solutions.

So Far...
 - Improved duality-based conditions.

So Far...

- Improved duality-based conditions.
Next
Devise duality-based methods that
(a) converge in some sense to dual-stationary points;
(b) able to tackle large-scale instances

So Far...

- Improved duality-based conditions.

Next
Devise duality-based methods that
(a) converge in some sense to dual-stationary points;
(b) able to tackle large-scale instances

Example of a scalable method for PCA:
Oja's method (variant of stochastic projected gradient):

$$
\mathbf{x}^{k+1}=\frac{\tilde{\mathbf{x}}^{k+1}}{\left\|\tilde{\mathbf{x}}^{k+1}\right\|_{2}}, \text { where } \tilde{\mathbf{x}}^{k+1}=\mathbf{x}^{k}+t_{k} \mathbf{a}_{i_{k}}
$$

variants and more results [Shamir '16]
Objective: define a simple/cheap method for the general (P) that converges to dual-stationary pts.

Back to the Dual Problem

(D) $\max _{y \in \mathbb{R}^{\{ }}\{q(\mathbf{y}) \equiv \underbrace{g^{*}\left(\mathbf{A}^{\top} \mathbf{y}\right)}_{\text {real-valued }}-\underbrace{f^{*}(\mathbf{y})}_{C^{1,1,1} \text { function }}\}$.

Equivalent to $\left(\mathrm{D}^{\prime}\right) \quad \min _{\mathbf{y} \in \mathbb{R}^{n}}\{\underbrace{f^{*}(\mathbf{y})}_{C^{1,1}}-\underbrace{g^{*}\left(\mathbf{A}^{\top} \mathbf{y}\right)}_{\text {real-valued }}\}$.

Back to the Dual Problem

$$
\text { (D) } \max _{y \in \mathbb{R}^{\{ }}^{\{q(\mathbf{y}) \equiv} \underbrace{g^{*}\left(\mathbf{A}^{\top} \mathbf{y}\right)}_{\text {real-valued }}-\underbrace{f^{*}(\mathbf{y})}_{C^{1,1,1} \text { function }}\} \text {. }
$$

Equivalent to (D^{\prime}) $\quad \min _{\mathbf{y} \in \mathbb{R}^{n}}\{\underbrace{\left\{f^{*}(\mathbf{y})\right.}_{C^{1,1}}-\underbrace{g^{*}\left(\mathbf{A}^{\top} \mathbf{y}\right)}_{\text {real-valued }}\}$.

Idea: employ a randomized coordinate descent (RCD) method on (D^{\prime})

The RCD Method

Input. (F, \mathbf{t}^{0}, r) where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{t}^{0} \in \mathbb{R}^{m}, r \in(0, \infty]$
General Step. For any $k=0,1, \ldots$
(a) pick $i_{k} \in[n]$ at random (assume uniform for simplicity)
(b) compute $\alpha \in \operatorname{argmin} F\left(t_{1}^{k}, t_{2}^{k}, \ldots, t_{i_{k}-1}^{k}, t, t_{i_{k}+1}^{k}, \ldots, t_{n}^{k}\right)$; $t \in[-r, r]$
(c) set $t_{i_{k}}^{k+1}=\alpha$ and $t_{j}^{k+1}=t_{j}^{k}$ for $j \neq i_{k}$.

Convergence of RCD in the Dual Space

Theorem [Beck, Hallak 2020] Let $F=f_{1}-f_{2}$

- $f_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable convex
- $f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex.

Let $\left\{\boldsymbol{y}^{k}\right\}_{k \geq 0}$ be generated by RCD. Then almost surely, all accumulation points of $\left\{\boldsymbol{y}^{k}\right\}_{k \geq 0}$ are stationary points of the problem $\min _{\mathbf{y}} F(\mathbf{y})$.

Dual RCD for Solving (P) $\max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A x})-g(\mathbf{x})\}$ Primal Sequence: $\mathbf{x}^{k} \in \partial g^{*}\left(\mathbf{A}^{T} \mathbf{y}^{k}\right)\left(\mathbf{y}^{k}\right.$ - dual sequence, $\left.\mathbf{z}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}\right)$

Dual RCD for Solving (P) $\max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A x})-g(\mathbf{x})\}$

Primal Sequence: $\mathbf{x}^{k} \in \partial g^{*}\left(\mathbf{A}^{T} \mathbf{y}^{k}\right)\left(\mathbf{y}^{k}\right.$ - dual sequence, $\left.\mathbf{z}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}\right)$
Dual RCD (Input: $(f, g, \mathbf{A}), r \in(0, \infty])$
Initialization. $\mathbf{y}^{0}=\mathbf{0} \in \mathbb{R}^{n}, \mathbf{z}^{0}=\mathbf{0} \in \mathbb{R}^{d}$.
General Step. For any $k=0,1, . ., K$,
(a) pick $i_{k} \in[n]$ at random
(b) compute

$$
t_{k} \in \underset{t \in[-r, r]}{\operatorname{argmin}}\left\{f^{*}\left(y^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}\right)-g^{*}\left(z^{k}+\left(t-y_{i k}\right) \mathbf{a}_{i_{k}}\right)\right\} ;
$$

(c) update $\mathbf{y}^{k+1}=\mathbf{y}^{k}+\left(t_{k}-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}$ and $\mathbf{z}^{k+1}=\mathbf{z}^{k}+\left(t_{k}-y_{i_{k}}\right) \mathbf{a}_{i_{k}}$.

Output: $\mathbf{x}_{\text {out }} \in \partial g^{*}\left(\mathbf{z}^{K+1}\right)$.
Form: $z^{k+1}=z^{k}+s_{k} \mathbf{a}_{i_{k}} ; g=\delta_{B_{2}[0,1]} \Rightarrow$ normalization of output:
$\mathbf{x}_{\text {out }}=\mathbf{z}^{K+1} /\left\|\mathbf{z}^{K+1}\right\|_{2}$.

Dual RCD for Solving (P) $\max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A x})-g(\mathbf{x})\}$

Primal Sequence: $\mathbf{x}^{k} \in \partial g^{*}\left(\mathbf{A}^{T} \mathbf{y}^{k}\right)\left(\mathbf{y}^{k}\right.$ - dual sequence, $\left.\mathbf{z}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}\right)$
Dual RCD (Input: $(f, g, \mathbf{A}), r \in(0, \infty])$
Initialization. $\mathbf{y}^{0}=\mathbf{0} \in \mathbb{R}^{n}, \mathbf{z}^{0}=\mathbf{0} \in \mathbb{R}^{d}$.
General Step. For any $k=0,1, . ., K$,
(a) pick $i_{k} \in[n]$ at random
(b) compute

$$
t_{k} \in \underset{t \in[-r, r]}{\operatorname{argmin}}\left\{f^{*}\left(y^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}\right)-g^{*}\left(\mathbf{z}^{k}+\left(t-y_{i k}\right) \mathbf{a}_{\mathbf{a}_{k}}\right)\right\} ;
$$

(c) update $\mathbf{y}^{k+1}=\mathbf{y}^{k}+\left(t_{k}-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}$ and $\mathbf{z}^{k+1}=\mathbf{z}^{k}+\left(t_{k}-y_{i_{k}}\right) \mathbf{a}_{i_{k}}$.

Output: $\mathbf{x}_{\text {out }} \in \partial g^{*}\left(\mathbf{z}^{K+1}\right)$.
Form: $\mathbf{z}^{k+1}=\mathbf{z}^{k}+s_{k} \mathbf{a}_{i_{k}} ; g=\delta_{B_{2}[0,1]} \Rightarrow$ normalization of output:
$\mathbf{x}_{\text {out }}=\mathbf{z}^{K+1} /\left\|\mathbf{z}^{K+1}\right\|_{2}$.
Different then Oja's method for PCA (repeated normalization):

$$
\mathbf{x}^{k+1}=\tilde{\mathbf{x}}^{k+1} /\left\|\tilde{\mathbf{x}}^{k+1}\right\|_{2} \text {, where } \tilde{\mathbf{x}}^{k+1}=\mathbf{x}^{k}+t_{k} \mathbf{a}_{i_{k}},
$$

Primal Convergence of Dual RCD

Theorem

- let $\left\{\boldsymbol{y}^{k}\right\}_{k \geq 0}$ be generated by RCD employed on

$$
-q(\mathbf{y})=f^{*}(\mathbf{y})-g^{*}\left(\mathbf{A}^{T} \mathbf{y}\right)
$$

- assume that $-q$ has bounded level sets
- let $\mathbf{x}^{k} \in \partial g^{*}\left(\mathbf{A}^{T} \mathbf{y}^{k}\right)$.
\Rightarrow a.s. all accumulation pts. of $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ are dual stationary pts. of (P).
- assumption also required to make the method well-defined.
- not always easy to verify

Replacing the Bounded Level Sets Assumption

- asymptotic function of a proper $h: h_{\infty}(\mathbf{d}) \equiv \operatorname{limininf}_{\mathbf{d}^{\prime} \rightarrow \mathbf{d}, t \rightarrow \infty} \frac{h\left(t \mathbf{d}^{\prime}\right)}{t}$.
- known result: if $h_{\infty}(\mathbf{d})>0 \forall \mathbf{d} \neq \mathbf{0} \Rightarrow h$ has bounded level sets.

Replacing the Bounded Level Sets Assumption

- asymptotic function of a proper $h: h_{\infty}(\mathbf{d}) \equiv \liminf _{\mathbf{d}^{\prime} \rightarrow \mathbf{d}, t \rightarrow \infty} \frac{h\left(t \mathbf{d}^{\prime}\right)}{t}$.
- known result: if $h_{\infty}(\mathbf{d})>0 \forall \mathbf{d} \neq \mathbf{0} \Rightarrow h$ has bounded level sets.
- conclusion: it is enough to assume

$$
[C] \quad\left(-q_{\infty}\right)(\mathbf{d})=\left(f^{*}(\cdot)-g^{*}\left(\mathbf{A}^{T} \cdot\right)\right)_{\infty}(\mathbf{d})>0 \forall \mathbf{d} \neq \mathbf{0} .
$$

However, condition [C] is not explicit. Need a calculus rule for asymptotic functions!

Replacing the Bounded Level Sets Assumption

- asymptotic function of a proper $h: h_{\infty}(\mathbf{d}) \equiv \liminf _{\mathbf{d}^{\prime} \rightarrow \mathbf{d}, t \rightarrow \infty} \frac{h\left(t \mathbf{d}^{\prime}\right)}{t}$.
- known result: if $h_{\infty}(\mathbf{d})>0 \forall \mathbf{d} \neq \mathbf{0} \Rightarrow h$ has bounded level sets.
- conclusion: it is enough to assume

$$
[C] \quad\left(-q_{\infty}\right)(\mathbf{d})=\left(f^{*}(\cdot)-g^{*}\left(\mathbf{A}^{T} \cdot\right)\right)_{\infty}(\mathbf{d})>0 \forall \mathbf{d} \neq \mathbf{0} .
$$

However, condition [C] is not explicit. Need a calculus rule for asymptotic functions!

Lemma. Suppose u, v real-valued such that v is Lipschitz continuous and convex. Then

$$
(u-v)_{\infty}=u_{\infty}-v_{\infty} .
$$

Replacing the Bounded Level Sets Assumption

- asymptotic function of a proper $h: h_{\infty}(\mathbf{d}) \equiv \liminf _{\mathbf{d}^{\prime} \rightarrow \mathbf{d}, t \rightarrow \infty} \frac{h\left(t \mathbf{d}^{\prime}\right)}{t}$.
- known result: if $h_{\infty}(\mathbf{d})>0 \forall \mathbf{d} \neq \mathbf{0} \Rightarrow h$ has bounded level sets.
- conclusion: it is enough to assume

$$
[C] \quad\left(-q_{\infty}\right)(\mathbf{d})=\left(f^{*}(\cdot)-g^{*}\left(\mathbf{A}^{T} \cdot\right)\right)_{\infty}(\mathbf{d})>0 \forall \mathbf{d} \neq \mathbf{0} .
$$

However, condition [C] is not explicit. Need a calculus rule for asymptotic functions!

Lemma. Suppose u, v real-valued such that v is Lipschitz continuous and convex. Then

$$
(u-v)_{\infty}=u_{\infty}-v_{\infty} .
$$

Result. Bounded level set assumption can be replaced by

$$
\text { [C] }\left(f^{*}\right)_{\infty}(\mathbf{d})-\left(g^{*}\right)_{\infty}\left(\mathbf{A}^{T} \mathbf{d}\right)>0
$$

Validity of [C] for the 3 PCA Models

name	$f(\mathbf{x})$	$g(\mathbf{x})$		
PCA	$\frac{1}{2}\\|\mathbf{x}\\|_{2}^{2}$	$\delta_{B_{2}[0,1]}(\mathbf{x})$		
SPCA	$\frac{1}{2}\\|\mathbf{x}\\|_{2}^{2}$	$\delta_{\operatorname{Conv}\left(B_{2}[0,1] \cap C_{s}\right)}(\mathbf{x})$		
SRPCA	$-\sum_{i=1}^{n} \sqrt{\left\\|\mathbf{a}_{i}\right\\|_{2}^{2}+\varepsilon^{2}-z_{i}^{2}}$	$\delta_{B_{2}[0,1]}(\mathbf{x})$		
	$\left(\left\|z_{i}\right\| \leq \sqrt{\left\\|\mathbf{a}_{i}\right\\|_{2}^{2}+\varepsilon^{2}}\right)$			

PCA,SPCA: $f^{*}(\mathbf{y})=\frac{1}{2}\|\mathbf{y}\|_{2}^{2} \Rightarrow\left(f^{*}\right)_{\infty}(\mathbf{d})=\infty \quad \forall \mathbf{d} \neq \mathbf{0}$

Validity of [C] for the 3 PCA Models

name	$f(\mathbf{x})$	$g(\mathbf{x})$				
PCA	$\frac{1}{2}\\|\mathbf{x}\\|_{2}^{2}$	$\delta_{B_{2}[0,1]}(\mathbf{x})$				
SPCA	$\frac{1}{2}\\|\mathbf{x}\\|_{2}^{2}$	$\delta_{\operatorname{conv}\left(B_{2}[0,1] \cap C_{s}\right)}(\mathbf{x})$				
SRPCA	$-\sum_{i=1}^{n} \sqrt{\left\\|\mathbf{a}_{i}\right\\|_{2}^{2}+\varepsilon^{2}-z_{i}^{2}}$ $\left(\left\|z_{i}\right\| \leq \sqrt{\left\\|\mathbf{a}_{i}\right\\|_{2}^{2}+\varepsilon^{2}}\right)$	$\delta_{B_{2}[0,1]}(\mathbf{x})$				

PCA,SPCA: $f^{*}(\mathbf{y})=\frac{1}{2}\|\mathbf{y}\|_{2}^{2} \Rightarrow\left(f^{*}\right)_{\infty}(\mathbf{d})=\infty \quad \forall \mathbf{d} \neq \mathbf{0}$ SRPCA: $f^{*}(\mathbf{y})=\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}+\varepsilon^{2}} \sqrt{y_{i}^{2}+1} \Rightarrow\left(f^{*}\right)_{\infty}(\mathbf{d})=$

$$
\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}+\varepsilon^{2}}\left|d_{i}\right|-\left\|\mathbf{A}^{T} \mathbf{d}\right\|_{2}>0 \text { for all } \mathbf{d} \neq \mathbf{0}
$$

(would not work without smoothing)

Convergence Rate when $g=\delta_{B_{2}[0,1]}$ problem (P) amounts to

$$
\text { (P) } \max _{\mathbf{x}}\left\{f(\mathbf{A x}):\|\mathbf{x}\|_{2} \leq 1\right\}
$$

Dual:

$$
q_{\mathrm{opt}}=\max _{\mathbf{y}}\left\{q(\mathbf{y}) \equiv\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-f^{*}(\mathbf{y})\right\} .
$$

Assumption: $\underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})=\{\mathbf{0}\}$.

Convergence Rate when $g=\delta_{B_{2}[0,1]}$ problem (P) amounts to

$$
\text { (P) } \max _{\mathbf{x}}\left\{f(\mathbf{A} \mathbf{x}):\|\mathbf{x}\|_{2} \leq 1\right\}
$$

Dual:

$$
q_{\mathrm{opt}}=\max _{\mathbf{y}}\left\{q(\mathbf{y}) \equiv\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-f^{*}(\mathbf{y})\right\} .
$$

Assumption: $\underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})=\{\mathbf{0}\}$.
Lemma. If $\mathbf{y}^{0}=\mathbf{0}$, then the dual objective function q is differentiable at \mathbf{y}^{k} for all $k \geq 1$ (as well as all accumulation pts)

Convergence Rate when $g=\delta_{B_{2}[0,1]}$

 problem (P) amounts to(P) $\max _{\mathbf{x}}\left\{f(\mathbf{A x}):\|\mathbf{x}\|_{2} \leq 1\right\}$

Dual:

$$
q_{\mathrm{opt}}=\max _{\mathbf{y}}\left\{q(\mathbf{y}) \equiv\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-f^{*}(\mathbf{y})\right\} .
$$

Assumption: $\underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})=\{\mathbf{0}\}$.
Lemma. If $\mathbf{y}^{0}=\mathbf{0}$, then the dual objective function q is differentiable at \mathbf{y}^{k} for all $k \geq 1$ (as well as all accumulation pts)

Theorem. Let $\left\{\boldsymbol{y}^{k}\right\}_{k \geq 0}$ be generated by the RCD method employed on $-q$ with initialization $\boldsymbol{y}^{0}=\mathbf{0}$. Then

$$
\min _{k=1, \ldots, N} \mathbb{E}\left(\left\|\nabla q\left(\mathbf{y}^{k}\right)\right\|_{2}^{2}\right) \leq \frac{2 n L_{\max }}{N}\left(q_{\mathrm{opt}}-q(\mathbf{0})\right)
$$

where $L_{\text {max }}$ - maximum of coordinate Lipschitz constants of f^{*}.

Dual RCD Methods for PCA

(PCA) $\max _{\|\mathbf{x}\|_{2} \leq 1}\|\mathbf{A x}\|_{2}^{2} \quad$ (D-PCA) $\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-0.5\|\mathbf{y}\|_{2}^{2}\right\}$.
1-D minimization problem solved at each iteration $\left(\mathbf{z}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}\right)$
(1D) $\min _{t}\left\{h(t) \equiv 0.5\left\|\mathbf{y}^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}\right\|_{2}^{2}-\left\|\mathbf{z}^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{a}_{i_{k}}\right\|_{2}\right\}$,
reduces to the finding roots of a quartic polynomial

Dual RCD Methods for PCA

(PCA) $\max _{\|\mathbf{x}\|_{2} \leq 1}\|\mathbf{A x}\|_{2}^{2} \quad$ (D-PCA) $\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-0.5\|\mathbf{y}\|_{2}^{2}\right\}$.
1-D minimization problem solved at each iteration $\left(\mathbf{z}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}\right)$
(1D) $\min _{t}\left\{h(t) \equiv 0.5\left\|\mathbf{y}^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}\right\|_{2}^{2}-\left\|\mathbf{z}^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{a}_{i_{k}}\right\|_{2}\right\}$,
reduces to the finding roots of a quartic polynomial

Dual RCD Method for PCA

Initialization. $\mathbf{y}^{0}=\mathbf{0}, \mathbf{z}^{0}=\mathbf{0}$.
General Step. For any $k=0,1, \ldots K$,
(a) pick $i_{k} \in[n]$ at random.
(b) find a solution t_{k} of problem (1D)
(c) $\mathbf{y}^{k+1}=\mathbf{y}^{k}+\left(t_{k}-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}, \mathbf{z}^{k+1}=\mathbf{z}^{k}+\left(t_{k}-y_{i_{k}}\right) \mathbf{a}_{i_{k}}$

Output: $\mathbf{x}_{\text {out }}=\frac{\mathbf{z}^{K+1}}{\left\|\mathbf{z}^{K+1}\right\|_{2}}$.

Dual RCD Methods for SRPCA

(P) $\max _{\|\mathbf{x}\|_{2} \leq 1}-\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle^{2}+\varepsilon^{2}}$, (D) $\max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{2}-\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}+\varepsilon^{2}} \sqrt{y_{i}^{2}+1}\right\}$. 1-D minimization solved at each iteration $\left(\mathbf{z}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}, \tilde{\mathbf{z}}^{k}=\mathbf{z}^{k}-y_{i_{k}} \mathbf{a}_{i_{k}}\right)$

$$
(1 D) \min _{t}\left\{h_{3}(t) \equiv \sqrt{\left\|\mathbf{a}_{i_{k}}\right\|_{2}^{2}+\varepsilon^{2}} \sqrt{t^{2}+1}-\sqrt{\left\|\tilde{\mathbf{z}}^{k}\right\|_{2}^{2}+2 t \mathbf{a}_{i_{k}}^{T} \tilde{\mathbf{z}}^{k}+t^{2}\left\|\mathbf{a}_{i_{k}}\right\|_{2}^{2}}\right\},
$$

reduces to the finding roots of a quartic polynomial

Dual RCD Methods for SRPCA

(P) $\max _{\|\mathbf{x}\|_{2} \leq 1}-\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle^{2}+\varepsilon^{2}},(\mathrm{D}) \max _{\mathrm{y} \in \mathrm{Rax}^{\mathrm{n}}}\left\{\left\|\mathbf{A}^{\top} \mathbf{y}\right\|_{2}-\sum_{i=1}^{n} \sqrt{\left\|\mathbf{a}_{i}\right\|_{2}^{2}+\varepsilon^{2}} \sqrt{y_{i}^{2}+1}\right\}$. 1-D minimization solved at each iteration ($\mathbf{z}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}, \tilde{\mathbf{z}}^{k}=\mathbf{z}^{k}-y_{i_{k}} \mathbf{a}_{i_{k}}$)

$$
(1 D) \min _{t}\left\{h_{3}(t) \equiv \sqrt{\left\|\mathbf{a}_{k}\right\|_{2}^{2}+\varepsilon^{2}} \sqrt{t^{2}+1}-\sqrt{\left\|\tilde{\mathbf{z}}^{k}\right\|_{2}^{2}+2 t \mathbf{a}_{i_{k}}^{T} \tilde{\mathbf{z}}^{k}+t^{2}\left\|\mathbf{a}_{i_{k}}\right\|_{2}^{2}}\right\},
$$

reduces to the finding roots of a quartic polynomial

Dual RCD Method for SRPCA

Initialization. $\mathbf{y}^{0}=\mathbf{0}, \mathbf{z}^{0}=\mathbf{0}$.
General Step. For any $k=0,1, \ldots K$,
(a) pick $i_{k} \in[n]$ at random.
(b) find a solution t_{k} of problem (1D)
(c) $\mathbf{y}^{k+1}=\mathbf{y}^{k}+\left(t_{k}-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}, \mathbf{z}^{k+1}=\mathbf{z}^{k}+\left(t_{k}-y_{i_{k}}\right) \mathbf{a}_{i_{k}}$

Output: $\mathbf{x}_{\text {out }}=\frac{\frac{z}{K}^{K+1}}{\left\|\mathbf{z}^{K+1}\right\|_{2}}$.

Dual RCD Methods for SPCA

(P) $\max \left\{\|\mathbf{A} \mathbf{x}\|_{2}^{2}:\|\mathbf{x}\|_{2} \leq 1,\|\mathbf{x}\|_{0} \leq s\right\}$
(D) $\max _{\mathbf{y}}\left\{\left\|T_{s}\left(\mathbf{A}^{T} \mathbf{y}\right)\right\|_{2}-0.5\|\mathbf{y}\|_{2}^{2}\right\}$.

1-D minimization problem solved at each iteration $\left(\mathbf{z}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}\right)$
(1D) $\min _{t}\left\{0.5\left\|\boldsymbol{y}^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}\right\|_{2}^{2}-\left\|T_{s}\left(\mathbf{z}^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{a}_{i_{k}}\right)\right\|_{2}\right\}$

Dual RCD Methods for SPCA

(P) $\max \left\{\|\mathbf{A} \mathbf{x}\|_{2}^{2}:\|\mathbf{x}\|_{2} \leq 1,\|\mathbf{x}\|_{0} \leq s\right\}$
(D) $\max _{\mathbf{y}}\left\{\left\|T_{s}\left(\mathbf{A}^{T} \mathbf{y}\right)\right\|_{2}-0.5\|\mathbf{y}\|_{2}^{2}\right\}$.

1-D minimization problem solved at each iteration $\left(\mathbf{z}^{k}=\mathbf{A}^{T} \mathbf{y}^{k}\right)$
(1D) $\min _{t}\left\{0.5\left\|\mathbf{y}^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{e}_{i_{k}}\right\|_{2}^{2}-\left\|T_{s}\left(\mathbf{z}^{k}+\left(t-y_{i_{k}}^{k}\right) \mathbf{a}_{i_{k}}\right)\right\|_{2}\right\}$

- Same type of update formula $\mathbf{z}^{k+1}=\mathbf{z}^{k}+\left(t_{k}-y_{i_{k}}\right) \mathbf{a}_{i_{k}}$
- No explicit formula for the solution of (1D) problem

Solving the 1D Problem

$$
\min _{t}\left\{R_{\mathbf{v}, \mathbf{w}}(t) \equiv 0.5 t^{2}-\left\|T_{s}(\mathbf{v}+t \mathbf{w})\right\|_{2}\right\}
$$

- Result 1: all optimal solutions are in $\left[-\|\mathbf{w}\|_{2},\|\mathbf{w}\|_{2}\right]$
- Result 2: $R_{\mathbf{v}, \mathbf{w}}$ is $2\|\mathbf{w}\|_{2}$-Lipschitz continuous

Summary - Main Points

$$
\begin{gathered}
\text { (P) } \max _{\mathbf{x} \in \mathbb{R}^{d}}\{f(\mathbf{A} \mathbf{x})-g(\mathbf{x})\}, \\
\text { (D) } \max _{\mathbf{y} \in \mathbb{R}^{n}}\left\{q(\mathbf{y}) \equiv g^{*}\left(\mathbf{A}^{T} \mathbf{y}\right)-f^{*}(\mathbf{y})\right\} .
\end{gathered}
$$

- duality-stationarity is a stronger condition than criticality.
- dual randomized coordinate descent algorithms converge a.s. to dual-stationary points
- form of dual RCD: $\mathbf{z}^{k+1}=\mathbf{z}^{k}+s_{k} \mathbf{a}_{i_{k}}$. s_{k} is a solution of a 1D problem.

THANK YOU FOR YOUR ATTENTION!!

