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Introduction

Feature Selection.

� Reduce number of variables while preserving classification performance.

� Often improves test performance, especially when samples are scarce.

� Helps interpretation.

Classical examples: LASSO, `1-logistic regression, RFE-SVM, . . .

Alex d’Aspremont OWOS, June 2020. 2/32



Introduction: feature selection

RNA classification. Find genes which best discriminate cell type (lung cancer vs
control). 35238 genes, 2695 examples. [Lachmann et al., 2018]
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Best ten genes: MT-CO3, MT-ND4, MT-CYB, RP11-217O12.1, LYZ,
EEF1A1, MT-CO1, HBA2, HBB, HBA1.
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Introduction: feature selection

Applications. Mapping brain activity by fMRI.

From PARIETAL team at INRIA.
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Introduction: feature selection

fMRI. Many voxels, very few samples leads to false discoveries.

Wired article on Bennett et al. “Neural Correlates of Interspecies Perspective
Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple
Comparisons Correction” Journal of Serendipitous and Unexpected Results, 2010.
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Introduction: linear models

Linear models. Select features from large weights w.

� LASSO solves minw ‖Xw − y‖22 + λ‖w‖1 with linear prediction given by wTx.

� Linear SVM, solves minw
∑
imax{0, 1− yiwTxi}+ λ‖w‖22 with linear

classification rule sign(wTx).

� `1-logistic regression, etc.

In practice.

� Relatively high complexity on very large-scale data sets.

� Recovery results require uncorrelated features (incoherence, RIP, etc.).

� Cheaper featurewise methods (ANOVA, TF-IDF, etc.) have relatively poor
performance.
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Outline

� Sparse Naive Bayes

� The Shapley-Folkman theorem

� Duality gap bounds

� Numerical performance
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Multinomial Naive Bayes

Multinomial Naive Bayes. In the multinomial model

logProb(x | C±) = x> log θ± + log

(
(
∑m
j=1 xj)!∏m
j=1 xj!

)
.

Training by maximum likelihood

(θ+∗ , θ
−
∗ ) = argmax

1>θ+=1>θ−=1
θ+,θ−∈[0,1]m

f+> log θ+ + f−> log θ−

Linear classification rule: for a given test point x ∈ Rm, set

ŷ(x) = sign(v + w>x),

where

w , log θ+∗ − log θ−∗ and v , logProb(C+)− logProb(C−),
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Sparse Naive Bayes

Naive Feature Selection. Make w , log θ+∗ − log θ−∗ sparse.

Solve
(θ+∗ , θ

−
∗ ) = argmax f+> log θ+ + f−> log θ−

subject to ‖θ+ − θ−‖0 ≤ k
1>θ+ = 1>θ− = 1
θ+, θ+ ≥ 0

(SMNB)

where k ≥ 0 is a target number of features. Features for which θ+i = θ−i can be
discarded.

Nonconvex problem.

� Convex relaxation?

� Approximation bounds?
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Sparse Naive Bayes

Convex Relaxation. The dual is very simple.

Sparse Multinomial Naive Bayes [Askari, A., El Ghaoui, 2019]

Let φ(k) be the optimal value of (SMNB). Then φ(k) ≤ ψ(k), where ψ(k) is the
optimal value of the following one-dimensional convex optimization problem

ψ(k) := C + min
α∈[0,1]

sk(h(α)), (USMNB)

where C is a constant, sk(·) is the sum of the top k entries of its vector argument,
and for α ∈ (0, 1),

h(α) := f+◦log f++f−◦log f−−(f++f−)◦log(f++f−)−f+ logα−f− log(1−α).

Solved by bisection, linear complexity O(n+ k log k). Approximation bounds?

Alex d’Aspremont OWOS, June 2020. 10/32



Outline

� Sparse Naive Bayes

� The Shapley-Folkman theorem

� Duality gap bounds

� Numerical performance
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Shapley-Folkman Theorem

Minkowski sum. Given sets X,Y ⊂ Rd, we have

X + Y = {x+ y : x ∈ X, y ∈ Y }

(CGAL User and Reference Manual)

Convex hull. Given subsets Vi ⊂ Rd, we have

Co

(∑
i

Vi

)
=
∑
i

Co(Vi)
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Shapley-Folkman Theorem

The `1/2 ball, Minkowski average of two and ten balls, convex hull.

+ + + + =

Minkowski sum of five first digits (obtained by sampling).
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Shapley-Folkman Theorem

Shapley-Folkman Theorem [Starr, 1969]

Suppose Vi ⊂ Rd, i = 1, . . . , n, and

x ∈ Co

(
n∑
i=1

Vi

)
=

n∑
i=1

Co(Vi)

then
x ∈

∑
[1,n]\Sx

Vi +
∑
Sx

Co(Vi)

where |Sx| ≤ d.
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Shapley-Folkman Theorem

Proof sketch. Write x ∈∑n
i=1Co(Vi), or

(
x
1n

)
=

n∑
i=1

d+1∑
j=1

λij

(
vij
ei

)
, for λ ≥ 0,

Conic Carathéodory then yields representation with at most n+ d nonzero
coefficients. Use a pigeonhole argument

λij

} d

}
n xi ∈ Vixi ∈ Co(Vi)

Number of nonzero λij controls gap with convex hull.
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Shapley-Folkman: geometric consequences

Consequences.

� If the sets Vi ⊂ Rd are uniformly bounded with rad(Vi) ≤ R, then

dH

(∑n
i=1 Vi
n

,Co

(∑n
i=1 Vi
n

))
≤ R

√
min{n, d}

n

where rad(V ) = infx∈V supy∈V ‖x− y‖.

� In particular, when d is fixed and n→∞(∑n
i=1 Vi
n

)
→ Co

(∑n
i=1 Vi
n

)
in the Hausdorff metric with rate O(1/n).

� Holds for many other nonconvexity measures [Fradelizi et al., 2017].
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Outline

� Sparse Naive Bayes

� The Shapley-Folkman theorem

� Duality gap bounds

� Numerical performance
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Nonconvex Optimization

Separable nonconvex problem. Solve

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b, (P)

in the variables xi ∈ Rdi with d =
∑n
i=1 di, where fi are lower semicontinuous

and A ∈ Rm×d.

Take the dual twice to form a convex relaxation,

minimize
∑n
i=1 f

∗∗
i (xi)

subject to Ax ≤ b (CoP)

in the variables xi ∈ Rdi.
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Nonconvex Optimization

Convex envelope. Biconjugate f∗∗ satisfies epi(f∗∗) = Co(epi(f)), which
means that

f∗∗(x) and f(x) match at extreme points of epi(f∗∗).

Define lack of convexity as ρ(f) , supx∈dom(f){f(x)− f∗∗(x)}.

Example.

0

1

−1 1

Card(x)

|x|

x

The l1 norm is the convex envelope of Card(x) in [−1, 1].
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Nonconvex Optimization

Writing the epigraph of problem (P) as in [Lemaréchal and Renaud, 2001],

Gr ,
{

(r0, r) ∈ R1+m :

n∑
i=1

fi(xi) ≤ r0, Ax− b ≤ r, x ∈ Rd
}
,

we can write the dual function of (P) as

Ψ(λ) , inf
{
r0 + λ>r : (r0, r) ∈ G∗∗r

}
,

in the variable λ ∈ Rm, where G∗∗ = Co(G) is the closed convex hull of the
epigraph G.

Affine constraints means (P) and (CoP) have the same dual [Lemaréchal and
Renaud, 2001, Th. 2.11], given by

sup
λ≥0

Ψ(λ) (D)

in the variable λ ∈ Rm. Roughly speaking, if G∗∗ = G, no duality gap in (P).
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Nonconvex Optimization

Epigraph & duality gap. Define

Fi =
{

(f∗∗i (xi), Aixi) : xi ∈ Rdi
}

+ Rm+1
+

where Ai ∈ Rm×di is the ith block of A.

� The epigraph G∗∗r can be written as a Minkowski sum of Fi

G∗∗r =

n∑
i=1

Fi + (0,−b) + Rm+1
+

� Shapley-Folkman at x ∈ G∗∗r shows f∗∗(xi) = f(xi) for all but at most m+ 1
terms in the objective.

� As n→∞, with m/n→ 0, Gr gets closer to its convex hull G∗∗r and the
duality gap becomes negligible.
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Bound on duality gap

A priori bound on duality gap of

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b,

where A ∈ Rm×d.

Proposition [Aubin and Ekeland, 1976, Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions fi in (P) satisfy
Assumption (. . . ). There is a point x? ∈ Rd at which the primal optimal value
of (CoP) is attained, such that

n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

≤
n∑
i=1

fi(x̂
?
i )︸ ︷︷ ︸

P

≤
n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

+

m+1∑
i=1

ρ(f[i])︸ ︷︷ ︸
gap

where x̂? is an optimal point of (P) and ρ(f[1]) ≥ ρ(f[2]) ≥ . . . ≥ ρ(f[n]).
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Bound on duality gap

General result. Consider the separable nonconvex problem

hP (u) := min.
∑n
i=1 fi(xi)

s.t.
∑n
i=1 gi(xi) ≤ b+ u

(P)

in the variables xi ∈ Rdi, with perturbation parameter u ∈ Rm.

Proposition [Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions fi, gji in problem (P)
satisfy assumption (...) for i = 1, . . . , n, j = 1, . . . ,m. Let

p̄j = (m+ 1) max
i
ρ(gji), for j = 1, . . . ,m

then
hP (p̄)∗∗ ≤ hP (p̄) ≤ hP (0)∗∗ + (m+ 1) max

i
ρ(fi).

where hP (u)∗∗ is the optimal value of the dual to (P).
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Naive Feature Selection

Duality gap bound. Sparse naive Bayes reads

hP (u) = minq,r −f+> log q − f−> log r

subject to 1>q = 1 + u1,

1>r = 1 + u2,∑m
i=1 1qi 6=ri ≤ k + u3

in the variables q, r ∈ [0, 1]m, where u ∈ R3. There are three constraints, two of
them convex, which means p̄ = (0, 0, 4).

Theorem [Askari, A., El Ghaoui, 2019]

NFS duality gap bounds. Let φ(k) be the optimal value of (SMNB) and ψ(k)
that of the convex relaxation (USMNB). We have

ψ(k − 4) ≤ φ(k) ≤ ψ(k),

for k ≥ 4.
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Naive Feature Selection

Primalization. Given α∗ solving (USMNB), reconstruct point (θ+, θ−).

For α∗ optimal for (USMNB), let I be complement of the set of indices
corresponding to the top k entries of h(α∗), set B± :=

∑
i6∈I f

±
i , and

θ+∗ i = θ−∗ i =
f+i + f−i

1>(f+ + f−)
, ∀i ∈ I, θ±∗i =

B+ +B−
B±

f±i
1>(f+ + f−)

, ∀i 6∈ I.

In all but pathological scenarios, k largest coefficients in (USMNB) give support
of the solution.

Alex d’Aspremont OWOS, June 2020. 25/32



Outline

� Sparse Naive Bayes

� Approximation bounds & the Shapley-Folkman theorem

� Numerical performance
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Naive Feature Selection

Data.

Feature Vectors Amazon IMDB Twitter MPQA SST2

Count Vector 31,666 103,124 273,779 6,208 16,599

tf-idf 31,666 103,124 273,779 6,208 16,599

tf-idf wrd bigram 870,536 8,950,169 12,082,555 27,603 227,012

tf-idf char bigram 25,019 48,420 17,812 4838 7762

Number of features in text data sets used below.

Amazon IMDB Twitter MPQA SST2

Count Vector 0.043 0.22 1.15 0.0082 0.037

tf-idf 0.033 0.16 0.89 0.0080 0.027

tf-idf wrd bigram 0.68 9.38 13.25 0.024 0.21

tf-idf char bigram 0.076 0.47 4.07 0.0084 0.082

Average run time (seconds, plain Python on CPU).
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Naive Feature Selection.
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Naive Feature Selection.
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Duality gap bound versus sparsity level for m = 30 (left panel) and m = 3000
(right panel), showing that the duality gap quickly closes as m or k increase.
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Naive Feature Selection.
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Run time with IMDB dataset/tf-idf vector data set, with increasing m, k with
fixed ratio k/m, empirically showing (sub-) linear complexity.
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Naive Feature Selection.

Criteo data set. Conversion logs. 45 GB, 45 million rows, 15000 columns.

� Preprocessing (NaN, encoding categorical features) takes 50 minutes.

� Computing f+ and f− takes 20 minutes.

� Computing the full curve below (i.e. solving 15000 problems) takes 2 minutes.
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Standard workstation, plain Python on CPU.
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Conclusion

Naive Feature Selection.

For naive Bayes, we get sparsity almost for free.

� Linear complexity.

� Nearly tight convex relaxation.

� Feature selection performance comparable to LASSO or `1 logistic regression,
but NFS is 100× faster. . .

� Requires no RIP assumption (only the naive one behind NB).

https://github.com/aspremon/NaiveFeatureSelection
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