Feature Selection &

the Shapley-Folkman Theorem.

Alexandre d'Aspremont,

CNRS & D.I., École Normale Supérieure.

With Armin Askari, Laurent El Ghaoui (UC Berkeley) and Quentin Rebjock (EPFL) Feature Selection.

- Reduce number of variables while preserving classification performance.
- Often improves test performance, especially when samples are scarce.
- Helps interpretation.

Classical examples: LASSO, ℓ_1 -logistic regression, RFE-SVM, . . .

Introduction: feature selection

RNA classification. Find genes which best discriminate cell type (lung cancer vs control). 35238 genes, 2695 examples. [Lachmann et al., 2018]

Best ten genes: MT-CO3, MT-ND4, MT-CYB, RP11-217O12.1, LYZ, EEF1A1, MT-CO1, HBA2, HBB, HBA1.

Applications. Mapping brain activity by fMRI.

Encoding and decoding models of cognition

From PARIETAL team at INRIA.

fMRI. Many voxels, very few samples leads to false discoveries.

Scanning Dead Salmon in fMRI Machine Highlights Risk of Red Herrings

Wired article on Bennett et al. "Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction" Journal of Serendipitous and Unexpected Results, 2010.

Introduction: linear models

Linear models. Select features from large weights w.

- LASSO solves $\min_{w} \|Xw y\|_{2}^{2} + \lambda \|w\|_{1}$ with linear prediction given by $w^{T}x$.
- Linear SVM, solves $\min_{w} \sum_{i} \max\{0, 1 y_i w^T x_i\} + \lambda ||w||_2^2$ with linear classification rule $\operatorname{sign}(w^T x)$.
- ℓ_1 -logistic regression, etc.

In practice.

- Relatively high complexity on very large-scale data sets.
- Recovery results require **uncorrelated features** (incoherence, RIP, etc.).
- Cheaper featurewise methods (ANOVA, TF-IDF, etc.) have relatively poor performance.

- Sparse Naive Bayes
- The Shapley-Folkman theorem
- Duality gap bounds
- Numerical performance

Multinomial Naive Bayes

Multinomial Naive Bayes. In the multinomial model

$$\log \operatorname{Prob}(x \mid C_{\pm}) = x^{\top} \log \theta^{\pm} + \log \left(\frac{\left(\sum_{j=1}^{m} x_{j}\right)!}{\prod_{j=1}^{m} x_{j}!} \right).$$

Training by maximum likelihood

$$(\theta_*^+, \theta_*^-) = \operatorname*{argmax}_{\substack{\mathbf{1}^\top \theta^+ = \mathbf{1}^\top \theta^- = 1\\ \theta^+, \theta^- \in [0, 1]^m}} f^{+\top} \log \theta^+ + f^{-\top} \log \theta^-$$

Linear classification rule: for a given test point $x \in \mathbb{R}^m$, set

$$\hat{y}(x) = \operatorname{sign}(v + w^{\top}x),$$

where

$$w \triangleq \log \theta_*^+ - \log \theta_*^-$$
 and $v \triangleq \log \operatorname{Prob}(C_+) - \log \operatorname{Prob}(C_-),$

Sparse Naive Bayes

Naive Feature Selection. Make $w \triangleq \log \theta_*^+ - \log \theta_*^-$ sparse.

Solve

$$\begin{array}{ll} (\theta^+_*, \theta^-_*) = & \operatorname{argmax} & f^{+\top} \log \theta^+ + f^{-\top} \log \theta^- \\ & \operatorname{subject to} & \|\theta^+ - \theta^-\|_0 \le k \\ & \mathbf{1}^{\top} \theta^+ = \mathbf{1}^{\top} \theta^- = 1 \\ & \theta^+, \theta^+ \ge 0 \end{array}$$
 (SMNB)

where $k \ge 0$ is a target number of features. Features for which $\theta_i^+ = \theta_i^-$ can be discarded.

Nonconvex problem.

- Convex relaxation?
- Approximation bounds?

Convex Relaxation. The dual is very simple.

Sparse Multinomial Naive Bayes [Askari, A., El Ghaoui, 2019]

Let $\phi(k)$ be the optimal value of (SMNB). Then $\phi(k) \leq \psi(k)$, where $\psi(k)$ is the optimal value of the following one-dimensional convex optimization problem

$$\psi(k) := C + \min_{\alpha \in [0,1]} s_k(h(\alpha)), \qquad (USMNB)$$

where C is a constant, $s_k(\cdot)$ is the sum of the top k entries of its vector argument, and for $\alpha \in (0, 1)$,

$$h(\alpha) := f_+ \circ \log f_+ + f_- \circ \log f_- - (f_+ + f_-) \circ \log(f_+ + f_-) - f_+ \log \alpha - f_- \log(1 - \alpha).$$

Solved by bisection, linear complexity $O(n + k \log k)$. Approximation bounds?

- Sparse Naive Bayes
- The Shapley-Folkman theorem
- Duality gap bounds
- Numerical performance

Shapley-Folkman Theorem

Minkowski sum. Given sets $X, Y \subset \mathbb{R}^d$, we have

$$X + Y = \{x + y : x \in X, y \in Y\}$$

(CGAL User and Reference Manual)

Convex hull. Given subsets $V_i \subset \mathbb{R}^d$, we have

$$\mathbf{Co}\left(\sum_{i}V_{i}
ight)=\sum_{i}\mathbf{Co}(V_{i})$$

Shapley-Folkman Theorem

The $\ell_{1/2}$ ball, Minkowski average of two and ten balls, convex hull.

Minkowski sum of five first digits (obtained by sampling).

Shapley-Folkman Theorem [Starr, 1969]

Suppose $V_i \subset \mathbb{R}^d$, $i = 1, \ldots, n$, and

$$x \in \mathbf{Co}\left(\sum_{i=1}^{n} V_i\right) = \sum_{i=1}^{n} \mathbf{Co}(V_i)$$

then

$$x \in \sum_{[1,n] \setminus S_x} V_i + \sum_{S_x} \mathbf{Co}(V_i)$$

where $|\mathcal{S}_x| \leq d$.

Shapley-Folkman Theorem

Proof sketch. Write $x \in \sum_{i=1}^{n} \mathbf{Co}(V_i)$, or

$$\begin{pmatrix} x \\ \mathbf{1}_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^{d+1} \lambda_{ij} \begin{pmatrix} v_{ij} \\ e_i \end{pmatrix}, \quad \text{for } \lambda \ge 0,$$

Conic Carathéodory then yields representation with at most n + d nonzero coefficients. Use a pigeonhole argument

Number of nonzero λ_{ij} controls gap with convex hull.

Shapley-Folkman: geometric consequences

Consequences.

If the sets $V_i \subset \mathbb{R}^d$ are uniformly bounded with $rad(V_i) \leq R$, then

$$d_H\left(\frac{\sum_{i=1}^n V_i}{n}, \mathbf{Co}\left(\frac{\sum_{i=1}^n V_i}{n}\right)\right) \le R\frac{\sqrt{\min\{n, d\}}}{n}$$

where $\operatorname{rad}(V) = \inf_{x \in V} \sup_{y \in V} ||x - y||$.

 \blacksquare In particular, when d is fixed and $n \to \infty$

$$\left(\frac{\sum_{i=1}^{n} V_i}{n}\right) \to \mathbf{Co}\left(\frac{\sum_{i=1}^{n} V_i}{n}\right)$$

in the Hausdorff metric with rate O(1/n).

Holds for many other nonconvexity measures [Fradelizi et al., 2017].

- Sparse Naive Bayes
- The Shapley-Folkman theorem
- Duality gap bounds
- Numerical performance

Separable nonconvex problem. Solve

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} f_i(x_i) \\ \text{subject to} & Ax \leq b, \end{array} \tag{P}$$

in the variables $x_i \in \mathbb{R}^{d_i}$ with $d = \sum_{i=1}^n d_i$, where f_i are lower semicontinuous and $A \in \mathbb{R}^{m \times d}$.

Take the dual twice to form a **convex relaxation**,

minimize
$$\sum_{i=1}^{n} f_i^{**}(x_i)$$
 (CoP)
subject to $Ax \le b$

in the variables $x_i \in \mathbb{R}^{d_i}$.

Convex envelope. Biconjugate f^{**} satisfies $epi(f^{**}) = \overline{Co(epi(f))}$, which means that

 $f^{**}(x)$ and f(x) match at extreme points of $epi(f^{**})$.

Define lack of convexity as $\rho(f) \triangleq \sup_{x \in \operatorname{dom}(f)} \{f(x) - f^{**}(x)\}.$

Example.

The l_1 norm is the convex envelope of Card(x) in [-1, 1].

Writing the epigraph of problem (P) as in [Lemaréchal and Renaud, 2001],

$$\mathcal{G}_r \triangleq \left\{ (r_0, r) \in \mathbb{R}^{1+m} : \sum_{i=1}^n f_i(x_i) \le r_0, \, Ax - b \le r, x \in \mathbb{R}^d \right\},\$$

we can write the dual function of (P) as

$$\Psi(\lambda) \triangleq \inf \left\{ r_0 + \lambda^\top r : (r_0, r) \in \mathcal{G}_r^{**} \right\},\$$

in the variable $\lambda \in \mathbb{R}^m$, where $\mathcal{G}^{**} = \overline{\mathbf{Co}(\mathcal{G})}$ is the closed convex hull of the epigraph \mathcal{G} .

Affine constraints means (P) and (CoP) have the same dual [Lemaréchal and Renaud, 2001, Th. 2.11], given by

$$\sup_{\lambda \ge 0} \Psi(\lambda) \tag{D}$$

in the variable $\lambda \in \mathbb{R}^m$. Roughly speaking, if $\mathcal{G}^{**} = \mathcal{G}$, no duality gap in (P).

Alex d'Aspremont

OWOS, June 2020. 20/32

Epigraph & duality gap. Define

$$\mathcal{F}_{i} = \left\{ (f_{i}^{**}(x_{i}), A_{i}x_{i}) : x_{i} \in \mathbb{R}^{d_{i}} \right\} + \mathbb{R}_{+}^{m+1}$$

where $A_i \in \mathbb{R}^{m \times d_i}$ is the i^{th} block of A.

• The epigraph \mathcal{G}_r^{**} can be written as a **Minkowski sum** of \mathcal{F}_i

$$\mathcal{G}_{r}^{**} = \sum_{i=1}^{n} \mathcal{F}_{i} + (0, -b) + \mathbb{R}_{+}^{m+1}$$

Shapley-Folkman at $x \in \mathcal{G}_r^{**}$ shows $f^{**}(x_i) = f(x_i)$ for all but at most m+1 terms in the objective.

As $n \to \infty$, with $m/n \to 0$, \mathcal{G}_r gets closer to its convex hull \mathcal{G}_r^{**} and the duality gap becomes negligible.

Bound on duality gap

A priori bound on duality gap of

minimize
$$\sum_{i=1}^{n} f_i(x_i)$$

subject to $Ax \leq b$,

where $A \in \mathbb{R}^{m \times d}$.

Proposition [Aubin and Ekeland, 1976, Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions f_i in (P) satisfy Assumption (...). There is a point $x^* \in \mathbb{R}^d$ at which the primal optimal value of (CoP) is attained, such that

$$\underbrace{\sum_{i=1}^{n} f_i^{**}(x_i^{\star})}_{CoP} \leq \underbrace{\sum_{i=1}^{n} f_i(\hat{x}_i^{\star})}_{P} \leq \underbrace{\sum_{i=1}^{n} f_i^{**}(x_i^{\star})}_{CoP} + \underbrace{\sum_{i=1}^{m+1} \rho(f_{[i]})}_{\text{gap}}$$

where \hat{x}^{\star} is an optimal point of (P) and $\rho(f_{[1]}) \ge \rho(f_{[2]}) \ge \ldots \ge \rho(f_{[n]})$.

Bound on duality gap

General result. Consider the separable nonconvex problem

$$h_P(u) := \min \sum_{i=1}^n f_i(x_i)$$

s.t.
$$\sum_{i=1}^n g_i(x_i) \le b + u$$
 (P)

in the variables $x_i \in \mathbb{R}^{d_i}$, with perturbation parameter $u \in \mathbb{R}^m$.

Proposition [Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions f_i, g_{ji} in problem (P) satisfy assumption (...) for i = 1, ..., n, j = 1, ..., m. Let

$$\bar{p}_j = (m+1) \max_i \rho(g_{ji}), \quad \text{for } j = 1, \dots, m$$

then

$$h_P(\bar{p})^{**} \le h_P(\bar{p}) \le h_P(0)^{**} + (m+1) \max_i \rho(f_i).$$

where $h_P(u)^{**}$ is the optimal value of the dual to (P).

Duality gap bound. Sparse naive Bayes reads

$$h_P(u) = \min_{q,r} -f^{+\top} \log q - f^{-\top} \log r$$

subject to
$$\mathbf{1}^{\top} q = 1 + u_1,$$

$$\mathbf{1}^{\top} r = 1 + u_2,$$

$$\sum_{i=1}^m \mathbf{1}_{q_i \neq r_i} \leq k + u_3$$

in the variables $q, r \in [0, 1]^m$, where $u \in \mathbb{R}^3$. There are three constraints, two of them convex, which means $\bar{p} = (0, 0, 4)$.

Theorem [Askari, A., El Ghaoui, 2019]

NFS duality gap bounds. Let $\phi(k)$ be the optimal value of (SMNB) and $\psi(k)$ that of the convex relaxation (USMNB). We have

$$\psi(k-4) \le \phi(k) \le \psi(k),$$

for $k \geq 4$.

Primalization. Given α_* solving (USMNB), reconstruct point (θ^+, θ^-) .

For α^* optimal for (USMNB), let \mathcal{I} be complement of the set of indices corresponding to the top k entries of $h(\alpha_*)$, set $B_{\pm} := \sum_{i \notin \mathcal{I}} f_i^{\pm}$, and

$$\theta_{*i}^{+} = \theta_{*i}^{-} = \frac{f_{i}^{+} + f_{i}^{-}}{\mathbf{1}^{\top}(f^{+} + f^{-})}, \ \forall i \in \mathcal{I}, \quad \theta_{*i}^{\pm} = \frac{B_{+} + B_{-}}{B_{\pm}} \frac{f_{i}^{\pm}}{\mathbf{1}^{\top}(f^{+} + f^{-})}, \ \forall i \notin \mathcal{I}.$$

In all but pathological scenarios, k largest coefficients in (USMNB) give support of the solution.

- Sparse Naive Bayes
- Approximation bounds & the Shapley-Folkman theorem
- Numerical performance

Data.

FEATURE VECTORS	Amazon	IMDB	TWITTER	MPQA	SST2
Count Vector	$31,\!666$	$103,\!124$	273,779	6,208	$16,\!599$
TF-IDF	$31,\!666$	$103,\!124$	$273,\!779$	$6,\!208$	$16,\!599$
TF-IDF WRD BIGRAM	$870,\!536$	$8,\!950,\!169$	$12,\!082,\!555$	$27,\!603$	$227,\!012$
TF-IDF CHAR BIGRAM	$25,\!019$	$48,\!420$	$17,\!812$	4838	7762

Number of features in text data sets used below.

	Amazon	IMDB	TWITTER	MPQA	SST2
Count Vector	0.043	0.22	1.15	0.0082	0.037
TF-IDF	0.033	0.16	0.89	0.0080	0.027
TF-IDF WRD BIGRAM	0.68	9.38	13.25	0.024	0.21
TF-IDF CHAR BIGRAM	0.076	0.47	4.07	0.0084	0.082

Average run time (seconds, plain Python on CPU).

Accuracy versus run time on IMDB/Count Vector, MNB in stage two.

Alex d'Aspremont

OWOS, June 2020. 28/32

Duality gap bound versus sparsity level for m = 30 (left panel) and m = 3000 (right panel), showing that the duality gap quickly closes as m or k increase.

Alex d'Aspremont

OWOS, June 2020. 29/32

Run time with IMDB dataset/tf-idf vector data set, with increasing m, k with fixed ratio k/m, empirically showing (sub-) linear complexity.

Alex d'Aspremont

OWOS, June 2020. 30/32

Criteo data set. Conversion logs. 45 GB, 45 million rows, 15000 columns.

- Preprocessing (NaN, encoding categorical features) takes 50 minutes.
- Computing f^+ and f^- takes 20 minutes.
- Computing the full curve below (i.e. solving 15000 problems) takes 2 minutes.

Standard workstation, plain Python on CPU.

For naive Bayes, we get sparsity almost for free.

- Linear complexity.
- Nearly tight convex relaxation.
- Feature selection performance comparable to LASSO or ℓ_1 logistic regression, but NFS is $100 \times$ faster. . .
- Requires no RIP assumption (only the naive one behind NB).

https://github.com/aspremon/NaiveFeatureSelection

References

Jean-Pierre Aubin and Ivar Ekeland. Estimates of the duality gap in nonconvex optimization. *Mathematics of Operations Research*, 1(3): 225–245, 1976.

Ivar Ekeland and Roger Temam. Convex analysis and variational problems. SIAM, 1999.

Matthieu Fradelizi, Mokshay Madiman, Arnaud Marsiglietti, and Artem Zvavitch. The convexification effect of minkowski summation. *Preprint*, 2017.

Alexander Lachmann, Denis Torre, Alexandra B Keenan, Kathleen M Jagodnik, Hoyjin J Lee, Lily Wang, Moshe C Silverstein, and Avi Ma'ayan. Massive mining of publicly available rna-seq data from human and mouse. *Nature communications*, 9(1):1366, 2018.

Claude Lemaréchal and Arnaud Renaud. A geometric study of duality gaps, with applications. *Mathematical Programming*, 90(3):399–427, 2001.

Ross M Starr. Quasi-equilibria in markets with non-convex preferences. Econometrica: journal of the Econometric Society, pages 25–38, 1969.