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Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.

Based on original ideas by Drori and Teboulle (2014).

My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.

If interested, details are provided in references at the end.

Complementary material on Francis Bach’s blog (also ± informal)

https://francisbach.com/computer-aided-analyses/

More examples in toolbox’ manual

https://github.com/AdrienTaylor/Performance-Estimation-Toolbox
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Toy example: gradient descent

A few examples

Simplified proofs?

Concluding remarks and perspectives
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Analysis of a gradient method

Say we aim to solve

min
x∈Rd

f (x)

under some assumptions on f (it belongs to some class of functions).

(Gradient method) We decide to use: xk+1 = xk − γf ′(xk ).

Question: what a priori guarantees after N iterations?

Examples: how small should f (xN)− f (x?), ‖f ′(xN)‖, ‖xN − x?‖ be?
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Worst-case guarantees
Example: what can we a priori guarantee on ‖f ′(xN)‖

� for all f satisfying some assumptions,
� for xN was obtained through gradient descent from x0?

By definition, the “best” such guarantee is∥∥f ′(xN)∥∥ 6 “worst possible value of
∥∥f ′(xN)∥∥, given the assumptions” .

In other words:∥∥f ′(xN)∥∥ 6 max
F ,y0,...,yN

∥∥F ′(yN)∥∥
subject to y1, . . . , yN generated by gradient method from y0

F satisfies the assumptions on f

y0 not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point,
for example: assume bounded ‖x0 − x?‖2, ‖f ′(x0)‖2 or f (x0)− f (x?).
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Smooth strongly convex functions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex and L-smooth
iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈f ′(y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈f ′(y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖f ′(x)− f ′(y)‖ 6 L‖x − y‖,

(2b) (L-smoothness) f (x) 6 f (y) + 〈f ′(y), x − y〉+ L
2‖x − y‖2.
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Convergence rate of a gradient step

Toy example: What can we guarantee on ‖f ′(x1)‖ given that:

� f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L),
� x1 was generated by gradient descent: x1 = x0 − γf ′(x0),
� ‖f ′(x0)‖ is bounded?

max
f ,x0,x1

∥∥f ′(x1)∥∥2
s.t. f ∈ Fµ,L Functional class

x1 = x0 − γf ′(x0) Algorithm∥∥f ′(x0)∥∥2 = R2 Initial condition

Variables: f , x0, x1; parameters: µ, L, γ, R.
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From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

- How to cope with the constraint f ∈ Fµ,L?

Idea:

- replace f by its discrete version:

fi = f (xi ), gi = f ′(xi ) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi ) to be interpolable by a function f ∈ Fµ,L.

The new constraint is:

∃f ∈ Fµ,L : fi = f (xi ), gi = f ′(xi ), ∀i ∈ {0, 1} .
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- replace f by its discrete version:

fi = f (xi ), gi = f ′(xi ) ∀i ∈ {0, 1} .

- Require points (xi , gi , fi ) to be interpolable by a function f ∈ Fµ,L.
The new constraint is:
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Sampled version

� Performance estimation problem:

max
f ,x0,x1

‖f ′(x1)‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γf ′(x0),

‖f ′(x0)‖2 = R2.

� Variables: f , x0, x1.

� Sampled version:

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi ) i = 0, 1
gi = f ′(xi ) i = 0, 1

x1 = x0 − γg0,

‖g0‖2 = R2.

� Variables: x0, x1, g0, g1, f0, f1.
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Smooth strongly convex interpolation
Consider an index set S, and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi ) = fi , and gi ∈ ∂f (xi ), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2 + µ

2(1−µ/L)
∥∥xi − xj − 1

L
(gi − gj )

∥∥2.
- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.
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Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,g0,g1

f0,f1

‖g1‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi ) i = 1, 2
gi = f ′(xi ) i = 1, 2

x1 = x0 − γg0,

‖g0‖2 = R2.

� replacing them by

f1 > f0 + 〈g0, x1 − x0〉+ 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥x1 − x0 − 1

L
(g1 − g0)

∥∥2
f0 > f1 + 〈g1, x0 − x1〉+ 1

2L‖g0 − g1‖2 + µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(g0 − g1)

∥∥2.
� Same optimal value (no relaxation); but still non-convex quadratic problem.
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Semidefinite lifting

� Using x1 = x0 − γg0, all elements are quadratic in (g0, g1), and linear in (f0, f1):

max
g0,g1
f0,f1

‖g1‖2

subject to f1 > f0 − γ‖g0‖2 + 1
2L‖g1 − g0‖2 + µ

2(1−µ/L)
∥∥γg0 + 1

L
(g1 − g0)

∥∥2
f0 > f1 + γ〈g1, g0〉+ 1

2L‖g1 − g0‖2 + µ
2(1−µ/L)

∥∥γg0 + 1
L
(g1 − g0)

∥∥2
‖g0‖2 = R2.

� They are therefore linear in terms of a Gram matrix G and a vector F , with

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
=
[
g0 g1

]>[
g0 g1

]
, F =

[
f0 f1

]
,

where G < 0 by construction.
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Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖g0‖2 〈g0, g1〉
〈g0, g1〉 ‖g1‖2

]
, F =

[
f0 f1

]
,

� previous problem can be reformulated as a 2x2 SDP

max
G , F

G2,2

subject to F1 − F0 + γL(2−γµ)−1
2(L−µ) G1,1 + 1−γµ

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

F0 − F1 + γµ(2−γL)−1
2(L−µ) G1,1 + 1−γL

L−µ G1,2 − 1
2(L−µ)G2,2 > 0

G1,1 = 1

G < 0.

� Assuming g0, g1 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same optimal value by adding rank(G) 6 1.
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Solving the SDP...
Fix L = 1, µ = .1 and solve the SDP for a few values of γ.

−1 0 1 2 3
0

1

2

3

4

Step size

‖f ′(x1)‖2
‖f ′(x0)‖2

Observation: numerics match the (expected) max{(1− γL)2, (1− γµ)2}.
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Translation to worst-case guarantees

� Let us rephrase our target: we look for ρ(γ) (hopefully small) such that∥∥f ′(x1)∥∥ ≤ ρ(γ)∥∥f ′(x0)∥∥
is satisfied for all x0 ∈ Rd , f ∈ Fµ,L, and x1 = x0 − γf ′(x0).

� Feasible points to the previous SDP correspond to lower bounds on ρ(γ).

� Traditionally: guarantees on ρ(γ) obtained by combining inequalities (due to
problem assumptions).

Exactly what a dual does!

� Any ρ(γ) that is valid for all d is a feasible point to the dual SDP.
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Dual problem

� Introduce dual variables τ , λ1 and λ2,

� dual problem becomes

minimize
τ,λ1,λ2>0

τ

subject to S =

[
−λ1(γµ−1)(γL−1)

L−µ − τ −λ1(γ(µ+L)−2)
2(L−µ)

−λ1(γ(µ+L)−2)
2(L−µ) 1− λ1

L−µ

]
4 0

0 = λ1 − λ2.

� From any feasible point we get a valid rate ρ2(γ) = τ(γ).

� Strong duality holds (existence of a Slater point).
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Solving the dual
Fix L = 1, µ = .1 and solve the dual SDP for a few values of γ.

−1 0 1 2 3
0

5

10

Step size

D
ua
lv

al
ue
s
(λ

1
an
d
λ
2
)

λ1
λ2

Note: numerics match λ1 = λ2 = 2
|γ|ρ(γ) with ρ(γ) = max{|1− γL|, |1− γµ|}.
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Recovering a “standard” proof

Gradient with γ = 1
L
. Perform weighted sum of two inequalities

f0 > f1 +〈f ′(x1), x0 − x1〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ1

= 2
γ
(1− µγ)

f1 > f0 +〈f ′(x0), x1 − x0〉+ 1
2L‖f

′(x0)− f ′(x1)‖2

+ µ
2(1−µ/L)

∥∥x0 − x1 − 1
L
(f ′(x0)− f ′(x1))

∥∥2 : λ2

= 2
γ
(1− µγ)

with λ1, λ2 > 0. Weighted sum can be reformulated as

∥∥f ′(x1)∥∥2 6 (1− γµ)2
∥∥f ′(x0)∥∥2 − 2−γ(L+µ)

γ(L−µ)
∥∥(1− µγ)f ′(x0)− f ′(x1)

∥∥2︸ ︷︷ ︸

>0

, or = 0 when worst-case is achieved

,

6 (1− γµ)2
∥∥f ′(x0)∥∥2,

leading to ‖f ′(x1)‖2 6 (1− µ
L
)2‖f ′(x0)‖2 (tight).
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Remarks

Dual interpretations:

� Find smallest convergence rate that can be proved by a linear combination of
interpolation inequalities.

� From strong duality: in such settings, any (dimension-independent) convergence
rate can be proved by linear combination of interpolation inequalities.

� Any dual feasible point can be translated into a “traditional” (SDP-less) proof.

For finding proofs:

� the SDP might help by playing with both sides:
− play with primal (e.g., worst-case functions might be easy to identify),
− play with dual (e.g., dual variables might be easy to identify).

� Standard tricks apply, e.g., trace norm minimization for promoting low-rank
solutions (on primal or dual).
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When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Convergence measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) apply in a variety of settings.

In other situations, one might want to relax the PEP for obtaining upper-bounds.

21



When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Convergence measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) apply in a variety of settings.

In other situations, one might want to relax the PEP for obtaining upper-bounds.

21



When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Convergence measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) apply in a variety of settings.

In other situations, one might want to relax the PEP for obtaining upper-bounds.

21



When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Convergence measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) apply in a variety of settings.

In other situations, one might want to relax the PEP for obtaining upper-bounds.

21



When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Convergence measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) apply in a variety of settings.

In other situations, one might want to relax the PEP for obtaining upper-bounds.

21



When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Convergence measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) apply in a variety of settings.

In other situations, one might want to relax the PEP for obtaining upper-bounds.

21



When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Convergence measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) apply in a variety of settings.

In other situations, one might want to relax the PEP for obtaining upper-bounds.

21



When does it work?

Problem setting:

� pick a method

� pick a class of functions

� pick a type of inequality we want to reach
(e.g., via a convergence measure & an initial condition).

Why could we solve the previous PEP?

� Step size γ was “fixed beforehand”; no dependence on f (.) (non-adaptive).

� Class of function Fµ,L was encoded via linear constraints in G and F .

� Convergence measure ‖f ′(x1)‖2 was linear in terms of G and F .

� Initial condition ‖f ′(x0)‖2 was linear in terms of G and F .

... such conditions (or slight generalizations) apply in a variety of settings.

In other situations, one might want to relax the PEP for obtaining upper-bounds.

21



PEP genealogy (“my humble, biased, view on...”)

Base methodological developments:

’14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods
via SDPs, idea of using this machinery for designing methods.

’16 Kim and Fessler (MP): design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via
integral quadratic constraints (“IQCs”). Essentially Lyapunov functions.

In this presentation:
’17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual

interpretations of the SDPs, and few generalizations of the approach.

— Other examples randomly picked from different works.

’19 T, Bach: PEPs for designing potential functions (impose structure in proofs).

But also:
� Fair amount of algorithmic analyses (and design) originated from SDPs (from

different authors, examples below), in different settings.

� We try keeping track of related works in the toolbox’ manual (see later).
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Going further

� Sublinear rates? Via different types of guarantees, for example:

f (xN)− f (x?) 6 CN‖x0 − x?‖2,

for some CN (hopefully small and decreasing with N). Similar ideas and larger
SDPs (typically of order NxN).

� Optimizing/designing methods? For example, consider a gradient-type method

xk = x0 −
k−1∑
i=0

γk,i f
′(xi ),

and try to solve minimax (“minimize (over {γk,i}) the worst-case”).

For example,
see: Drori and Teboulle (2014, 2016), Kim and Fessler (2016, 2018, 2019).

� Lyapunov functions? E.g., let Vk = a‖xk − x?‖2 + b‖f ′(xk )‖2 + c(f (xk )− f?).

Given ρ, feasibility problem

“?∃a, b, c s.t. Vk+1 6 ρVk ”

is convex.
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Toy example: gradient descent

A few examples

Simplified proofs?

Concluding remarks and perspectives
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François Glineur Etienne de Klerk

“On the worst-case complexity of the gradient method with exact line
search for smooth strongly convex functions”
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Steepest descent with inexact search directions
min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

Relative error model:

‖f ′(xi )− di‖ 6 ε‖f ′(xi )‖ i = 0, 1, . . . , (1)

Noisy gradient descent method with exact line search
Input: f ∈ Fµ,L(Rd ), x0 ∈ Rd , 0 ≤ ε < 1.

for i = 0, 1, . . .

Select any seach direction di that satisfies (1);

γ = argminγ∈Rf (xi − γdi )

xi+1 = xi − γdi

Worst-case behavior:

f (xi+1)− f∗ 6

(
1− κε
1+ κε

)2
(f (xi )− f∗) i = 0, 1, . . .

where κε = µ
L

(1−ε)
(1+ε) .
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Problem formulation

In the same spirit as in previous slides:

max
f ,x0,x1,d0

f (x1)− f (x?)

s.t. f ∈ Fµ,L〈
f ′(x1), x1 − x0

〉
= 0〈

f ′(x1), d0
〉
= 0∥∥f ′(x0)− d0
∥∥2 6 ε2

∥∥f ′(x0)∥∥2
f (x0)− f (x?) = 1

SDP with based on x0, x1, x?, g0, g1, d0, and g? = 0.

Six interpolation conditions (each pair in set of 3 points) for replacing f ∈ Fµ,L.
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What does a proof look like?
Aggregate constraints:

f0 > f1 + 〈g1, x0 − x1〉+
1
2L
‖g0 − g1‖2 +

µ

2
(
1− µ

L

)‖x0 − x1 − (g0 − g1) /L‖2

f? > f0 + 〈g0, x? − x0〉+
1
2L
‖g? − g0‖2 +

µ

2
(
1− µ

L

)‖x? − x0 − (g? − g0) /L‖2

f? > f1 + 〈g1, x? − x1〉+
1
2L
‖g? − g1‖2 +

µ

2
(
1− µ

L

)‖x? − x1 − (g? − g1) /L‖2

0 = 〈g1, d0〉
0 = 〈g1, x1 − x0〉

ε2‖g0‖2 > ‖g0 − d0‖2

with multipliers

y1 = 1−κε
1+κε

, y2 = 2κε(1−κε)
(1+κε)2

, y3 = 2κε
1+κε

, y4 = 2
Lε+µε

, y5 = 1, y6 = 1−κε
εLε(1+κε)2

,

where we used Lε = L(1+ ε), µε = µ(1− ε), and κε = µε/Lε.
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What does the proof look like?

Resulting inequality:

f1 − f? 6
(
1−κε
1+κε

)2
(f0 − f?)

− Lµ(Lε−µε)(Lε+3µε)
2(L−µ)(Lε+µε)2

‖x0 + α1x1 − (1 + α1)x? + α2g0 − α3g1 + α4d0‖2

− 2Lµµε
(L−µ)(Lε+3µε)

‖x1 − x? + α5g0 + α6g1 + α7d0‖2

− ε
Lε+µε

‖g1 + α8g0 + α9d0‖2,

for some α1, . . . , α9.

Last three terms nonpositive, so

f1 − f? 6

(
1− κε
1+ κε

)2
(f0 − f?).

One actually has equality at optimality, due to a quadratic example.
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What does a worst-case look like?

Quadratic worst-case function f (x) = 1
2 x
>
(
µ 0
0 L

)
x :

•
x∗

•

•x1

•
x2

•x3

•
x4

•x5

•
x6

•x7

1√
L

1√
µ
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Yoel Drori

“Efficient first-order methods for convex minimization:
a constructive approach”
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Optimized gradient methods
Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex, with black-box oracle f ′(.) available.

Lower bound for large-scale setting (d > N + 2) by Drori (2017):

f (xN)− f (x?) >
L‖x0 − x?‖2

2θ2N

= O(1/N2)

,

with θ0 = 1, and:

θi+1 =


1+

√
4θ2i +1
2 if i 6 N − 2,

1+
√
8θ2i +1
2 if i = N − 1.

Coherent with historical lower bounds (Nemirovski & Yudin 1983) and optimal
methods (Nemirovski 1982), (Nesterov 1983).
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Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)
Inputs: f , x0, N.

For i = 1, 2, . . .
xi = argmin

x∈Rd

{
f (x) : x ∈ x0 + span{f ′(x0), . . . , f ′(xi−1)}

}
.

Worst-case guarantee:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
.
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Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Optimized gradient method with exact line-search
Inputs: f , x0, N.

For i = 1, . . . ,N

yi =

(
1−

1
θi

)
xi−1 +

1
θi
x0

di =

(
1−

1
θi

)
f ′(xi−1) +

1
θi

2
i−1∑
j=0

θj f
′(xj )


α = argmin

α∈R
f (yi + αdi )

xi = yi + αdi

Worst-case guarantee:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
.
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Optimized gradient methods
Three methods with the same (optimal) worst-case behavior

Optimized gradient method
Inputs: f , x0, N.

For i = 1, . . . ,N

yi = xi−1 −
1
L
f ′(xi−1)

zi = x0 −
2
L

i−1∑
j=0

θj f
′(xj )

xi =

(
1−

1
θi

)
yi +

1
θi
zi

Worst-case guarantee:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
.

See also (Drori & Teboulle 2014) and (Kim & Fessler 2016).
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Proof

Combine

� interpolation conditions for i , j ∈ {?, 0, . . . ,N}

f (xi ) > f (xj ) +
〈
f ′(xj ), xi − xj

〉
+ 1

2L

∥∥f ′(xi )− f ′(xj )
∥∥2

� optimality conditions for span searches〈
f ′(xi ), f

′(xj )
〉
= 0 0 6 j < i 6 N〈

f ′(xi ), xj − xi
〉
= 0 1 6 j 6 i 6 N

with appropriate weights.

Weighted sum can be rewritten exactly as:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
−

L

2θ2N

∥∥∥∥∥x0 − x? −
θN

L
f ′(xN)−

2
L

N−1∑
i=0

θi f
′(xi )

∥∥∥∥∥
2

Proof for GFOM actually valid for a family of methods, that includes OGM.
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Avoiding semidefinite programming modeling steps?

François Glineur Julien Hendrickx

“Performance Estimation Toolbox (PESTO): automated worst-case
analysis of first-order optimization methods”
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PESTO example: an inexact fast gradient method
Minimize L-smooth convex function f (x):

min
x∈Rd

f (x).

Fast Gradient Method (FGM)
Input: f ∈ F0,L(Rd ), x0 = y0 ∈ Rd .

For i = 0 : N − 1

xi+1 = yi −
1
L
∇f (yi )

yi+1 = xi+1 +
i − 1
i + 2

(xi+1 − xi )

What if inexact gradient used instead? Relative inaccuracy model:

‖∇̃f (yi )−∇f (yi )‖ ≤ ε‖∇f (yi )‖.
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% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.
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% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)

Performance-Estimation-Toolbox/InexactFastGr... https://github.com/AdrienTaylor/Performance-E...

1 of 2 6/27/18, 12:32 AM

Iteration counter k

f
(x

k
)
−

f
(x

?
)

39



PESTO example: an inexact fast gradient method

Performance-Estimation-Toolbox / Examples / InexactFastGradientMethod.m

AdrienTaylor / Performance-Estimation-Toolbox

masterBranch: Find file Copy path

ab9cacc just now

1 contributor

AdrienTaylor Update InexactFastGradientMethod.m

64 lines (47 sloc)  1.9 KB

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

clear all; clc;

% In this example, we use an inexact fast gradient method for solving the 

% L-smooth convex minimization problem

%   min_x F(x); 

%   for notational convenience we denote xs=argmin_x F(x);

% where F(x) is L-smooth and convex. The inexactness model is in terms of

% relative inaccuracy:

%

%   (gi is the gradient of F at xi)

%       ||d-gi||<=eps*||gi||

%

% We show how to compute the worst-case value of F(xN)-F(xs) when xN is

% obtained by doing N steps of the method starting with an initial

% iterate satisfying ||x0-xs||<=1.

% (0) Initialize an empty PEP

P = pep();

% (1) Set up the objective function

param.mu = 0;      % strong convexity parameter

param.L  = 1;      % Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function

% (2) Set up the starting point and initial condition

x0       = P.StartingPoint();        % x0 is some starting point

[xs, fs] = F.OptimalPoint();         % xs is an optimal point, and fs=F(xs)

P.InitialCondition((x0-xs)^2 <= 1);  % Add an initial condition ||x0-xs||^2<= 1

% (3) Algorithm

N = 7; % number of iterations

x    = cell(N+1,1); % we store the iterates in a cell for convenience

x{1} = x0;

y    = x0;

eps  = .1;

for i = 1:N

    d      = inexactsubgradient(y, F, eps);

    x{i+1} = y - 1/param.L * d;

    y      = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});

end

% (4) Set up the performance measure

[g, f] = F.oracle(x{N+1});    % g=grad F(x), f=F(x)

P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)

% (5) Solve the PEP

P.solve()

% (6) Evaluate the output

double(f - fs)   % worst-case objective function accuracy

% Result should be worse than 2/(N^2+5*N+6) (for exact fast gradient)

% see Taylor, Adrien B., Julien M. Hendrickx, and François Glineur.

%     "Exact Worst-case Performance of First-order Methods for Composite

%     Convex Optimization." to appear in SIAM Journal on Optimization

%     (2017)
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% (6) Evaluate the output
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Current examples within PESTO

Includes...

� subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,

� projected and proximal variants, and accelerated/momentum versions,

� steepest descent, greedy/conjugate gradient methods,

� Douglas-Rachford/three operator splitting,

� Frank-Wolfe/conditional gradient,

� inexact versions of gradient/fast gradient,

� Krasnoselskii-Mann and Halpern fixed-point iterations,

� mirror descent/Bregman gradient/NoLips,

� stochastic methods: SAG, SAGA, SGD, and some variants.

PESTO contains most of recent PEP-related advances (including techniques by other
groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Lieder, Lessard, Recht,
Packard, Van Scoy, Hu, Cyrus, Gu, Yang, etc.

If you have additional examples, we would be glad to add them!
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Toy example: gradient descent

A few examples

Simplified proofs?

Concluding remarks and perspectives

41



Francis Bach

“Stochastic first-order methods: non-asymptotic and computer-aided
analyses via potential functions”
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Some opinions on PEPs

Pros/cons of PEPs

, Worst-case guarantees cannot be improved,

, fair amount of generalizations (finite sums, constraints, prox, etc.),

, allows reaching proofs that could barely be obtained (or intuited) by hand,

/ SDPs typically become prohibitively large (with N and generalizations),

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

, possible to “force” simple proofs (typically at some cost: e.g., loosing tightness).
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Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O( 1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk )− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2019).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN 6 φfN−1 6 . . . 6 φf0 = L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .

Potentials are not new; see e.g., Nesterov (1983), Beck & Teboulle (2009), Hu &
Lessard (2017), Bansal & Gupta (2019).
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How does it work for the gradient method?
Gradient descent, take II: how to bound ‖f ′(xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 6 φfk .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2 + 2ck

〈
f ′(xk ), xk − x?

〉
+ dk (f (xk )− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 ≤ φ
f
k ”,

2. choice should result in bound on ‖f ′(xN)‖2.
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How does it work for the gradient method?
Given φfk+1, φ

f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 6 φfk?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 6 φfk for all L-smooth convex f , xk ∈ Rd , and d ∈ N
⇔

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words:
� efficient (convex) representation of Vk available!

� idea: apply previous reformulation tricks to reformulate:

0 > max
f

φfk+1 − φ
f
k .

Dual is a feasibility problem, linear in {ak , bk , ck , dk}k .
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How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2 + 2ck

〈
f ′(xk ), xk − x?

〉
+ dk (f (xk )− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φfN−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).
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How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 6 L2 ‖x0−x?‖2
bN

N =

1 2 3 4 . . . 100

bN =

4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Tentative simplification #1: dk = (2k + 1)L

[success]

Tentative simplification #2: ak = L2, ck = 0

[success]

Tentative simplification #3: dk = 0

[fail]

4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)
∥∥f ′(xk )∥∥2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk )‖2 = O(k−2).
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Fixed horizon N = 100, L = 1, and

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2 + 2ck

〈
f ′(xk ), xk − x?

〉
+ dk (f (xk )− f?).
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How does it work for the gradient method?
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[fail]
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hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).
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Potential functions

Simpler proof structures:

� allow keeping SDP formulations more tractable,

� hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

� all previous variants (everything that fits into regular PEPs)

� stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

� randomized block-coordinate variants,

... but also for designing methods!
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Toy example: gradient descent

A few examples

Simplified proofs?

Concluding remarks and perspectives
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Take-home message

Finding a worst-case ≡ solving an optimization problem

Duality between worst-case scenarios & combinations of inequalities!

PEP: a way to “brute-force” & “benchmark” such proofs.
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Concluding remarks
Performance estimation:

� numerically allows obtaining tight bounds (rigorous baselines),
� results can only be improved by changing algorithm and/or assumptions,
� helps designing analytical proofs (reduces to linear combinations of inequalities),

proofs can be engineered using numerics & symbolic computations!

� fast prototyping:

before trying to prove your new FO method works; give PEP a try!

� step forward to “reproducible theory”.

Difficulties:
� suffers from standard caveats of worst-case analyses,

key is to find good assumptions/parametrization

� closed-form solutions might be involved (if we care about tightness).

Ongoing research directions, open questions:
� computer-assisted algorithmic design,
� adaptive & structure-exploiting methods,
� non-convex & non-Euclidean settings?
� Higher order methods?
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Concluding remarks

A few other recent directions (on my webpage):

� Simplified proofs (Lyapunov functions and potentials),

� Stochastic/randomized methods,

� Mirror descent/Bregman gradient/NoLips/...

� Monotone inclusions, splitting methods,

� Our first attempts to the analysis of adaptive methods (Polyak step sizes &
line-searches).

Shameless advertisement:

� Radu-Alexandru Dragomir, T, Alexandre d’Aspremont, Jérôme Bolte. “Optimal complexity and
certification of Bregman first-order methods”. Preprint 2019.

� Mathieu Barré, T, Alexandre d’Aspremont. “Complexity Guarantees for Polyak Steps with
Momentum”. COLT 2020 (to appear).

� Ernest Ryu, T, Carolina Bergeling, Pontus Giselsson. “Operator splitting performance estimation:
Tight contraction factors and optimal parameter selection”. Siopt 2020 (to appear).
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www.di.ens.fr/∼ataylor/
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