Computer-aided worst-case analyses for first-order optimization

Adrien Taylor

PSL \star

One world optimization seminar - June 2020

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.
Based on original ideas by Drori and Teboulle (2014).

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.
Based on original ideas by Drori and Teboulle (2014).
My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.
Based on original ideas by Drori and Teboulle (2014).
My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.
Based on original ideas by Drori and Teboulle (2014).
My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.
If interested, details are provided in references at the end.

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.
Based on original ideas by Drori and Teboulle (2014).
My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.
If interested, details are provided in references at the end.
Complementary material on Francis Bach's blog (also \pm informal) https://francisbach.com/computer-aided-analyses/

Disclaimers about this presentation

Overall idea: principled approach to worst-case analyses in first-order optimization.
Based on original ideas by Drori and Teboulle (2014).
My personal (and informal) view on this topic
based on insights obtained through works with great collaborators.

Informal and example-based presentation.
If interested, details are provided in references at the end.
Complementary material on Francis Bach's blog (also \pm informal)
https://francisbach.com/computer-aided-analyses/
More examples in toolbox' manual
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

François Glineur

Mathieu Barré

Julien
Hendrickx

Francis Bach

Radu-Alexandru Dragomir

Etienne de Klerk

Jérôme Bolte

Bryan Van Scoy

Ernest
Ryu

Alexandre d'Aspremont

Laurent Lessard

Carolina
Bergeling

Pontus
Giselsson

Toy example: gradient descent

A few examples

Simplified proofs?

Concluding remarks and perspectives

Toy example: gradient descent

 A few examples
Simplified proofs?

Concluding remarks and perspectives

Analysis of a gradient method

Say we aim to solve

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

under some assumptions on f (it belongs to some class of functions).

Analysis of a gradient method

Say we aim to solve

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

under some assumptions on f (it belongs to some class of functions).
(Gradient method) We decide to use: $x_{k+1}=x_{k}-\gamma f^{\prime}\left(x_{k}\right)$.

Analysis of a gradient method

Say we aim to solve

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

under some assumptions on f (it belongs to some class of functions).
(Gradient method) We decide to use: $x_{k+1}=x_{k}-\gamma f^{\prime}\left(x_{k}\right)$.

Question: what a priori guarantees after N iterations?

Analysis of a gradient method

Say we aim to solve

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

under some assumptions on f (it belongs to some class of functions).
(Gradient method) We decide to use: $x_{k+1}=x_{k}-\gamma f^{\prime}\left(x_{k}\right)$.

Question: what a priori guarantees after N iterations?
Examples: how small should $f\left(x_{N}\right)-f\left(x_{\star}\right),\left\|f^{\prime}\left(x_{N}\right)\right\|,\left\|x_{N}-x_{\star}\right\|$ be?

Worst-case guarantees

Example: what can we a priori guarantee on $\left\|f^{\prime}\left(x_{N}\right)\right\|$

Worst-case guarantees

Example: what can we a priori guarantee on $\left\|f^{\prime}\left(x_{N}\right)\right\|$
\diamond for all f satisfying some assumptions,

Worst-case guarantees

Example: what can we a priori guarantee on $\left\|f^{\prime}\left(x_{N}\right)\right\|$
\diamond for all f satisfying some assumptions,
\diamond for x_{N} was obtained through gradient descent from x_{0} ?

Worst-case guarantees

Example: what can we a priori guarantee on $\left\|f^{\prime}\left(x_{N}\right)\right\|$
\diamond for all f satisfying some assumptions,
\diamond for x_{N} was obtained through gradient descent from x_{0} ?

By definition, the "best" such guarantee is
$\left\|f^{\prime}\left(x_{N}\right)\right\| \leqslant$ "worst possible value of $\left\|f^{\prime}\left(x_{N}\right)\right\|$, given the assumptions".

Worst-case guarantees

Example: what can we a priori guarantee on $\left\|f^{\prime}\left(x_{N}\right)\right\|$
\diamond for all f satisfying some assumptions,
\diamond for x_{N} was obtained through gradient descent from x_{0} ?

By definition, the "best" such guarantee is

$$
\left\|f^{\prime}\left(x_{N}\right)\right\| \leqslant \text { "worst possible value of }\left\|f^{\prime}\left(x_{N}\right)\right\| \text {, given the assumptions". }
$$

In other words:

$$
\left\|f^{\prime}\left(x_{N}\right)\right\| \leqslant \max _{F, y_{0}, \ldots, y_{N}}\left\|F^{\prime}\left(y_{N}\right)\right\|
$$

$$
\text { subject to } \quad y_{1}, \ldots, y_{N} \text { generated by gradient method from } y_{0}
$$

$$
F \text { satisfies the assumptions on } f
$$

Worst-case guarantees

Example: what can we a priori guarantee on $\left\|f^{\prime}\left(x_{N}\right)\right\|$
\diamond for all f satisfying some assumptions,
\diamond for x_{N} was obtained through gradient descent from x_{0} ?

By definition, the "best" such guarantee is

$$
\left\|f^{\prime}\left(x_{N}\right)\right\| \leqslant \text { "worst possible value of }\left\|f^{\prime}\left(x_{N}\right)\right\| \text {, given the assumptions". }
$$

In other words:

$$
\begin{aligned}
\left\|f^{\prime}\left(x_{N}\right)\right\| \leqslant & \left\|F_{F, y_{0}, \ldots, y_{N}}^{\max }\left(y_{N}\right)\right\| \\
\text { subject to } \quad & y_{1}, \ldots, y_{N} \text { generated by gradient method from } y_{0} \\
& F \text { satisfies the assumptions on } f
\end{aligned}
$$

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Worst-case guarantees

Example: what can we a priori guarantee on $\left\|f^{\prime}\left(x_{N}\right)\right\|$
\diamond for all f satisfying some assumptions,
\diamond for x_{N} was obtained through gradient descent from x_{0} ?

By definition, the "best" such guarantee is

$$
\left\|f^{\prime}\left(x_{N}\right)\right\| \leqslant \text { "worst possible value of }\left\|f^{\prime}\left(x_{N}\right)\right\| \text {, given the assumptions". }
$$

In other words:

$$
\left\|f^{\prime}\left(x_{N}\right)\right\| \leqslant \max _{F, y_{0}, \ldots, y_{N}}\left\|F^{\prime}\left(y_{N}\right)\right\|
$$

subject to $\quad y_{1}, \ldots, y_{N}$ generated by gradient method from y_{0} F satisfies the assumptions on f

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point, for example: assume bounded $\left\|x_{0}-x_{\star}\right\|^{2},\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}$ or $f\left(x_{0}\right)-f\left(x_{\star}\right)$.

Worst-case guarantees

Example: what can we a priori guarantee on $\left\|f^{\prime}\left(x_{N}\right)\right\|$
\diamond for all f and all x_{0} satisfying some assumptions,
\diamond for x_{N} was obtained through gradient descent from x_{0} ?

By definition, the "best" such guarantee is

$$
\left\|f^{\prime}\left(x_{N}\right)\right\| \leqslant \text { "worst possible value of }\left\|f^{\prime}\left(x_{N}\right)\right\| \text {, given the assumptions". }
$$

In other words:

$$
\left\|f^{\prime}\left(x_{N}\right)\right\| \leqslant \max _{F, y_{0}, \ldots, y_{N}}\left\|F^{\prime}\left(y_{N}\right)\right\|
$$

subject to y_{1}, \ldots, y_{N} generated by gradient method from y_{0}
F satisfies the assumptions on f
y_{0} not too bad.

This problem is typically unbounded (arbitrarily bad starting point are feasible).

Standard workaround: assume something on the starting point, for example: assume bounded $\left\|x_{0}-x_{\star}\right\|^{2},\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}$ or $f\left(x_{0}\right)-f\left(x_{\star}\right)$.

Smooth strongly convex functions

Consider a differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f$ is (μ-strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$ we have:

Smooth strongly convex functions

Consider a differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f$ is (μ-strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$ we have:

Smooth strongly convex functions

Consider a differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f$ is (μ-strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$ we have:

(1) (Convexity) $f(x) \geqslant f(y)+\left\langle f^{\prime}(y), x-y\right\rangle$,

Smooth strongly convex functions

Consider a differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f$ is (μ-strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$ we have:

(1) (Convexity) $f(x) \geqslant f(y)+\left\langle f^{\prime}(y), x-y\right\rangle$,
(1b) (μ-strong convexity) $f(x) \geqslant f(y)+\left\langle f^{\prime}(y), x-y\right\rangle+\frac{\mu}{2}\|x-y\|^{2}$,

Smooth strongly convex functions

Consider a differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f$ is (μ-strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$ we have:

(1) (Convexity) $f(x) \geqslant f(y)+\left\langle f^{\prime}(y), x-y\right\rangle$,
(1b) (μ-strong convexity) $f(x) \geqslant f(y)+\left\langle f^{\prime}(y), x-y\right\rangle+\frac{\mu}{2}\|x-y\|^{2}$,
(2) (L-smoothness) $\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \leqslant L\|x-y\|$,

Smooth strongly convex functions

Consider a differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, f$ is (μ-strongly) convex and L-smooth iff $\forall x, y \in \mathbb{R}^{d}$ we have:

(1) (Convexity) $f(x) \geqslant f(y)+\left\langle f^{\prime}(y), x-y\right\rangle$,
(1b) (μ-strong convexity) $f(x) \geqslant f(y)+\left\langle f^{\prime}(y), x-y\right\rangle+\frac{\mu}{2}\|x-y\|^{2}$,
(2) (L-smoothness) $\left\|f^{\prime}(x)-f^{\prime}(y)\right\| \leqslant L\|x-y\|$,
(2b) (L-smoothness) $f(x) \leqslant f(y)+\left\langle f^{\prime}(y), x-y\right\rangle+\frac{L}{2}\|x-y\|^{2}$.

Convergence rate of a gradient step

Convergence rate of a gradient step

Toy example: What can we guarantee on $\left\|f^{\prime}\left(x_{1}\right)\right\|$ given that:
$\diamond f$ is L-smooth and μ-strongly convex (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{1}$ was generated by gradient descent: $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$,
$\diamond\left\|f^{\prime}\left(x_{0}\right)\right\|$ is bounded?

Convergence rate of a gradient step

Toy example: What can we guarantee on $\left\|f^{\prime}\left(x_{1}\right)\right\|$ given that:
$\diamond f$ is L-smooth and μ-strongly convex (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{1}$ was generated by gradient descent: $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$,
$\diamond\left\|f^{\prime}\left(x_{0}\right)\right\|$ is bounded?

$$
\begin{gathered}
\max _{f, x_{0}, x_{1}}\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \\
\text { s.t. } f \in \mathcal{F}_{\mu, L}
\end{gathered}
$$

Functional class

Convergence rate of a gradient step

Toy example: What can we guarantee on $\left\|f^{\prime}\left(x_{1}\right)\right\|$ given that:
$\diamond f$ is L-smooth and μ-strongly convex (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{1}$ was generated by gradient descent: $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$,
$\diamond\left\|f^{\prime}\left(x_{0}\right)\right\|$ is bounded?

$$
\begin{array}{rr}
\max _{f, x_{0}, x_{\mathbf{1}}} & \left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \\
\text { s.t. } f \in \mathcal{F}_{\mu, L} & \\
& x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)
\end{array}
$$

Convergence rate of a gradient step

Toy example: What can we guarantee on $\left\|f^{\prime}\left(x_{1}\right)\right\|$ given that:
$\diamond f$ is L-smooth and μ-strongly convex (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{1}$ was generated by gradient descent: $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$,
$\diamond\left\|f^{\prime}\left(x_{0}\right)\right\|$ is bounded?

$$
\begin{aligned}
\max _{f, x_{0}, x_{1}} & \left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \\
\text { s.t. } & f \in \mathcal{F}_{\mu, L} \\
& x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right) \\
& \left\|f^{\prime}\left(x_{0}\right)\right\|^{2}=R^{2}
\end{aligned}
$$

Functional class
Algorithm
Initial condition

Convergence rate of a gradient step

Toy example: What can we guarantee on $\left\|f^{\prime}\left(x_{1}\right)\right\|$ given that:
$\diamond f$ is L-smooth and μ-strongly convex (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{1}$ was generated by gradient descent: $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$,
$\diamond\left\|f^{\prime}\left(x_{0}\right)\right\|$ is bounded?

$$
\begin{aligned}
\max _{f, x_{0}, x_{1}} & \left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \\
\text { s.t. } & f \in \mathcal{F}_{\mu, L} \\
& x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right) \\
& \left\|f^{\prime}\left(x_{0}\right)\right\|^{2}=R^{2}
\end{aligned}
$$

Functional class
Algorithm
Initial condition

Variables: f, x_{0}, x_{1};

Convergence rate of a gradient step

Toy example: What can we guarantee on $\left\|f^{\prime}\left(x_{1}\right)\right\|$ given that:
$\diamond f$ is L-smooth and μ-strongly convex (notation $f \in \mathcal{F}_{\mu, \mathrm{L}}$),
$\diamond x_{1}$ was generated by gradient descent: $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$,
$\diamond\left\|f^{\prime}\left(x_{0}\right)\right\|$ is bounded?

$$
\begin{array}{rr}
\max _{f, x_{0}, x_{1}} & \left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \\
\text { s.t. } f \in \mathcal{F}_{\mu, L} & \text { Functional class } \\
& x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right) \\
& \text { Algorithm } \\
& \left\|f^{\prime}\left(x_{0}\right)\right\|^{2}=R^{2}
\end{array} \text { Initial condition }
$$

Variables: f, x_{0}, x_{1}; parameters: μ, L, γ, R.

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?
- How to cope with the constraint $f \in \mathcal{F}_{\mu, L}$?

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?
- How to cope with the constraint $f \in \mathcal{F}_{\mu, L}$?

Idea:

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?
- How to cope with the constraint $f \in \mathcal{F}_{\mu, L}$?

Idea:

- replace f by its discrete version:

$$
f_{i}=f\left(x_{i}\right), g_{i}=f^{\prime}\left(x_{i}\right) \quad \forall i \in\{0,1\}
$$

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?
- How to cope with the constraint $f \in \mathcal{F}_{\mu, L}$?

Idea:

- replace f by its discrete version:

$$
f_{i}=f\left(x_{i}\right), g_{i}=f^{\prime}\left(x_{i}\right) \quad \forall i \in\{0,1\}
$$

- Require points $\left(x_{i}, g_{i}, f_{i}\right)$ to be interpolable by a function $f \in \mathcal{F}_{\mu, L}$.

From infinite to finite dimensional problems

As it is, the previous problem does not seem very practical...

- How to treat the infinite dimensional variable f ?
- How to cope with the constraint $f \in \mathcal{F}_{\mu, L}$?

Idea:

- replace f by its discrete version:

$$
f_{i}=f\left(x_{i}\right), g_{i}=f^{\prime}\left(x_{i}\right) \quad \forall i \in\{0,1\}
$$

- Require points $\left(x_{i}, g_{i}, f_{i}\right)$ to be interpolable by a function $f \in \mathcal{F}_{\mu, L}$. The new constraint is:

$$
\exists f \in \mathcal{F}_{\mu, L}: \quad f_{i}=f\left(x_{i}\right), g_{i}=f^{\prime}\left(x_{i}\right), \quad \forall i \in\{0,1\}
$$

Sampled version

Sampled version

\diamond Performance estimation problem:

$$
\begin{aligned}
\max _{f, x_{0}, x_{\mathbf{1}}} & \left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \\
\text { subject to } & f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \\
& x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right), \\
& \left\|f^{\prime}\left(x_{0}\right)\right\|^{2}=R^{2} .
\end{aligned}
$$

Sampled version

\diamond Performance estimation problem:

$$
\begin{aligned}
\max _{f, x_{0}, x_{1}} & \left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \\
\text { subject to } & f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \\
& x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right) \\
& \left\|f^{\prime}\left(x_{0}\right)\right\|^{2}=R^{2} .
\end{aligned}
$$

\diamond Variables: f, x_{0}, x_{1}.

Sampled version

\diamond Performance estimation problem:

$$
\begin{aligned}
\max _{f, x_{0}, x_{\mathbf{1}}} & \left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \\
\text { subject to } & f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \\
& x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right), \\
& \left\|f^{\prime}\left(x_{0}\right)\right\|^{2}=R^{2} .
\end{aligned}
$$

\diamond Variables: f, x_{0}, x_{1}.
\diamond Sampled version:

$$
\begin{array}{ll}
\max _{\substack{x_{\mathbf{0}}, x_{1}, g_{0}, g_{\mathbf{1}} \\
f_{\mathbf{0}}, f_{1}}} & \left\|g_{1}\right\|^{2} \\
\text { subject to } & \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=0,1 \\
g_{i}=f^{\prime}\left(x_{i}\right) & i=0,1\end{cases} \\
& x_{1}=x_{0}-\gamma g_{0}, \\
& \left\|g_{0}\right\|^{2}=R^{2}
\end{array}
$$

Sampled version

\diamond Performance estimation problem:

$$
\begin{aligned}
\max _{f, x_{0}, x_{1}} & \left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \\
\text { subject to } & f \text { is } L \text {-smooth and } \mu \text {-strongly convex, } \\
& x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right) \\
& \left\|f^{\prime}\left(x_{0}\right)\right\|^{2}=R^{2} .
\end{aligned}
$$

\diamond Variables: f, x_{0}, x_{1}.
\diamond Sampled version:

$$
\begin{aligned}
\max _{\substack{ \\
x_{0}, x_{1},,_{0}, g_{1} \\
f_{0}, f_{1}}} & \left\|g_{1}\right\|^{2} \\
\text { subject to } & \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=0,1 \\
g_{i}=f^{\prime}\left(x_{i}\right) & i=0,1\end{cases} \\
& x_{1}=x_{0}-\gamma g_{0}, \\
& \left\|g_{0}\right\|^{2}=R^{2} .
\end{aligned}
$$

\diamond Variables: $x_{0}, x_{1}, g_{0}, g_{1}, f_{0}, f_{1}$.

Smooth strongly convex interpolation

Consider an index set S, and its associated values $\left\{\left(x_{i}, g_{i}, f_{i}\right)\right\}_{i \in S}$ with coordinates x_{i}, (sub)gradients g_{i} and function values f_{i}.

Smooth strongly convex interpolation

Consider an index set S, and its associated values $\left\{\left(x_{i}, g_{i}, f_{i}\right)\right\}_{i \in S}$ with coordinates x_{i}, (sub)gradients g_{i} and function values f_{i}.

? Possible to find $f \in \mathcal{F}_{\mu, L}$ such that

$$
f\left(x_{i}\right)=f_{i}, \quad \text { and } \quad g_{i} \in \partial f\left(x_{i}\right), \quad \forall i \in S
$$

Smooth strongly convex interpolation

Consider an index set S, and its associated values $\left\{\left(x_{i}, g_{i}, f_{i}\right)\right\}_{i \in S}$ with coordinates x_{i}, (sub)gradients g_{i} and function values f_{i}.

? Possible to find $f \in \mathcal{F}_{\mu, L}$ such that

$$
f\left(x_{i}\right)=f_{i}, \quad \text { and } \quad g_{i} \in \partial f\left(x_{i}\right), \quad \forall i \in S
$$

- Necessary and sufficient condition: $\forall i, j \in S$

$$
f_{i} \geqslant f_{j}+\left\langle g_{j}, x_{i}-x_{j}\right\rangle+\frac{1}{2 L}\left\|g_{i}-g_{j}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{i}-x_{j}-\frac{1}{L}\left(g_{i}-g_{j}\right)\right\|^{2} .
$$

Smooth strongly convex interpolation

Consider an index set S, and its associated values $\left\{\left(x_{i}, g_{i}, f_{i}\right)\right\}_{i \in S}$ with coordinates x_{i}, (sub)gradients g_{i} and function values f_{i}.

? Possible to find $f \in \mathcal{F}_{\mu, L}$ such that

$$
f\left(x_{i}\right)=f_{i}, \quad \text { and } \quad g_{i} \in \partial f\left(x_{i}\right), \quad \forall i \in S
$$

- Necessary and sufficient condition: $\forall i, j \in S$

$$
f_{i} \geqslant f_{j}+\left\langle g_{j}, x_{i}-x_{j}\right\rangle+\frac{1}{2 L}\left\|g_{i}-g_{j}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{i}-x_{j}-\frac{1}{L}\left(g_{i}-g_{j}\right)\right\|^{2} .
$$

- Simpler example: pick $\mu=0$ and $L=\infty$ (just convexity):

$$
f_{i} \geqslant f_{j}+\left\langle g_{j}, x_{i}-x_{j}\right\rangle .
$$

Replace constraints

Replace constraints

\diamond Interpolation conditions allow removing red constraints

$$
\begin{aligned}
\max _{\substack{x_{0}, x_{1}, g_{0}, g_{1} \\
f_{0}, f_{1}}} & \left\|g_{1}\right\|^{2} \\
\text { subject to } & \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=1,2 \\
g_{i}=f^{\prime}\left(x_{i}\right) & i=1,2\end{cases} \\
& x_{1}=x_{0}-\gamma g_{0}, \\
& \left\|g_{0}\right\|^{2}=R^{2} .
\end{aligned}
$$

Replace constraints

\diamond Interpolation conditions allow removing red constraints

$$
\begin{aligned}
\max _{\substack{ \\
x_{0}, x_{1}, g_{0}, g_{1} \\
f_{0}, f_{1}}} & \left\|g_{1}\right\|^{2} \\
\text { subject to } & \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=1,2 \\
g_{i}=f^{\prime}\left(x_{i}\right) & i=1,2\end{cases} \\
& x_{1}=x_{0}-\gamma g_{0}, \\
& \left\|g_{0}\right\|^{2}=R^{2} .
\end{aligned}
$$

\diamond replacing them by

$$
\begin{aligned}
& f_{1} \geqslant f_{0}+\left\langle g_{0}, x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|g_{1}-g_{0}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{1}-x_{0}-\frac{1}{L}\left(g_{1}-g_{0}\right)\right\|^{2} \\
& f_{0} \geqslant f_{1}+\left\langle g_{1}, x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|g_{0}-g_{1}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(g_{0}-g_{1}\right)\right\|^{2} .
\end{aligned}
$$

Replace constraints

\diamond Interpolation conditions allow removing red constraints

$$
\begin{aligned}
\max _{\substack{x_{0}, x_{1}, g_{0}, g_{1} \\
f_{0}, f_{1}}} & \left\|g_{1}\right\|^{2} \\
\text { subject to } & \exists f \in \mathcal{F}_{\mu, L} \text { such that } \begin{cases}f_{i}=f\left(x_{i}\right) & i=1,2 \\
g_{i}=f^{\prime}\left(x_{i}\right) & i=1,2\end{cases} \\
& x_{1}=x_{0}-\gamma g_{0}, \\
& \left\|g_{0}\right\|^{2}=R^{2} .
\end{aligned}
$$

\diamond replacing them by

$$
\begin{aligned}
& f_{1} \geqslant f_{0}+\left\langle g_{0}, x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|g_{1}-g_{0}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{1}-x_{0}-\frac{1}{L}\left(g_{1}-g_{0}\right)\right\|^{2} \\
& f_{0} \geqslant f_{1}+\left\langle g_{1}, x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|g_{0}-g_{1}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(g_{0}-g_{1}\right)\right\|^{2} .
\end{aligned}
$$

\diamond Same optimal value (no relaxation); but still non-convex quadratic problem.

Semidefinite lifting

Semidefinite lifting

\diamond Using $x_{1}=x_{0}-\gamma g_{0}$, all elements are quadratic in $\left(g_{0}, g_{1}\right)$, and linear in $\left(f_{0}, f_{1}\right)$:

$$
\begin{aligned}
\substack{\max _{0}, g_{1} \\
f_{0}, f_{1}} & \left\|g_{1}\right\|^{2} \\
\text { subject to } & f_{1} \geqslant f_{0}-\gamma\left\|g_{0}\right\|^{2}+\frac{1}{2 L}\left\|g_{1}-g_{0}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|\gamma g_{0}+\frac{1}{L}\left(g_{1}-g_{0}\right)\right\|^{2} \\
& f_{0} \geqslant f_{1}+\gamma\left\langle g_{1}, g_{0}\right\rangle+\frac{1}{2 L}\left\|g_{1}-g_{0}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|\gamma g_{0}+\frac{1}{L}\left(g_{1}-g_{0}\right)\right\|^{2} \\
& \left\|g_{0}\right\|^{2}=R^{2} .
\end{aligned}
$$

Semidefinite lifting

\diamond Using $x_{1}=x_{0}-\gamma g_{0}$, all elements are quadratic in $\left(g_{0}, g_{1}\right)$, and linear in $\left(f_{0}, f_{1}\right)$:

$$
\begin{aligned}
\substack{\max _{0}, g_{1} \\
f_{0}, f_{1}} & \left\|g_{1}\right\|^{2} \\
\text { subject to } & f_{1} \geqslant f_{0}-\gamma\left\|g_{0}\right\|^{2}+\frac{1}{2 L}\left\|g_{1}-g_{0}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|\gamma g_{0}+\frac{1}{L}\left(g_{1}-g_{0}\right)\right\|^{2} \\
& f_{0} \geqslant f_{1}+\gamma\left\langle g_{1}, g_{0}\right\rangle+\frac{1}{2 L}\left\|g_{1}-g_{0}\right\|^{2}+\frac{\mu}{2(1-\mu / L)}\left\|\gamma g_{0}+\frac{1}{L}\left(g_{1}-g_{0}\right)\right\|^{2} \\
& \left\|g_{0}\right\|^{2}=R^{2} .
\end{aligned}
$$

\diamond They are therefore linear in terms of a Gram matrix G and a vector F, with

$$
G=\left[\begin{array}{cc}
\left\|g_{0}\right\|^{2} & \left\langle g_{0}, g_{1}\right\rangle \\
\left\langle g_{0}, g_{1}\right\rangle & \left\|g_{1}\right\|^{2}
\end{array}\right]=\left[\begin{array}{ll}
g_{0} & g_{1}
\end{array}\right]^{\top}\left[\begin{array}{ll}
g_{0} & g_{1}
\end{array}\right], \quad F=\left[\begin{array}{ll}
f_{0} & f_{1}
\end{array}\right]
$$

where $G \succcurlyeq 0$ by construction.

Semidefinite lifting

Semidefinite lifting

\diamond Using the new variables $G \succcurlyeq 0$ and F

$$
G=\left[\begin{array}{cc}
\left\|g_{0}\right\|^{2} & \left\langle g_{0}, g_{1}\right\rangle \\
\left\langle g_{0}, g_{1}\right\rangle & \left\|g_{1}\right\|^{2}
\end{array}\right], \quad F=\left[\begin{array}{cc}
f_{0} & f_{1}
\end{array}\right]
$$

Semidefinite lifting

\diamond Using the new variables $G \succcurlyeq 0$ and F

$$
G=\left[\begin{array}{cc}
\left\|g_{0}\right\|^{2} & \left\langle g_{0}, g_{1}\right\rangle \\
\left\langle g_{0}, g_{1}\right\rangle & \left\|g_{1}\right\|^{2}
\end{array}\right], \quad F=\left[\begin{array}{cc}
f_{0} & f_{1}
\end{array}\right]
$$

\diamond previous problem can be reformulated as a 2×2 SDP

$$
\begin{aligned}
\underset{G, F}{\max } & G_{2,2} \\
\text { subject to } & F_{1}-F_{0}+\frac{\gamma L(2-\gamma \mu)-1}{2(L-\mu)} G_{1,1}+\frac{1-\gamma \mu}{L-\mu} G_{1,2}-\frac{1}{2(L-\mu)} G_{2,2} \geqslant 0 \\
& F_{0}-F_{1}+\frac{\gamma \mu(2-\gamma L)-1}{2(L-\mu)} G_{1,1}+\frac{1-\gamma L}{L-\mu} G_{1,2}-\frac{1}{2(L-\mu)} G_{2,2} \geqslant 0 \\
& G_{1,1}=1 \\
& G \succcurlyeq 0 .
\end{aligned}
$$

Semidefinite lifting

\diamond Using the new variables $G \succcurlyeq 0$ and F

$$
G=\left[\begin{array}{cc}
\left\|g_{0}\right\|^{2} & \left\langle g_{0}, g_{1}\right\rangle \\
\left\langle g_{0}, g_{1}\right\rangle & \left\|g_{1}\right\|^{2}
\end{array}\right], \quad F=\left[\begin{array}{cc}
f_{0} & f_{1}
\end{array}\right]
$$

\diamond previous problem can be reformulated as a 2×2 SDP

$$
\begin{aligned}
\underset{G, F}{\max } & G_{2,2} \\
\text { subject to } & F_{1}-F_{0}+\frac{\gamma L(2-\gamma \mu)-1}{2(L-\mu)} G_{1,1}+\frac{1-\gamma \mu}{L-\mu} G_{1,2}-\frac{1}{2(L-\mu)} G_{2,2} \geqslant 0 \\
& F_{0}-F_{1}+\frac{\gamma \mu(2-\gamma L)-1}{2(L-\mu)} G_{1,1}+\frac{1-\gamma L}{L-\mu} G_{1,2}-\frac{1}{2(L-\mu)} G_{2,2} \geqslant 0 \\
& G_{1,1}=1 \\
& G \succcurlyeq 0 .
\end{aligned}
$$

\diamond Assuming $g_{0}, g_{1} \in \mathbb{R}^{d}$ with $d \geqslant 2$, same optimal value as original problem!

Semidefinite lifting

\diamond Using the new variables $G \succcurlyeq 0$ and F

$$
G=\left[\begin{array}{cc}
\left\|g_{0}\right\|^{2} & \left\langle g_{0}, g_{1}\right\rangle \\
\left\langle g_{0}, g_{1}\right\rangle & \left\|g_{1}\right\|^{2}
\end{array}\right], \quad F=\left[\begin{array}{cc}
f_{0} & f_{1}
\end{array}\right]
$$

\diamond previous problem can be reformulated as a 2×2 SDP

$$
\begin{aligned}
\max _{G, F} & G_{2,2} \\
\text { subject to } & F_{1}-F_{0}+\frac{\gamma L(2-\gamma \mu)-1}{2(L-\mu)} G_{1,1}+\frac{1-\gamma \mu}{L-\mu} G_{1,2}-\frac{1}{2(L-\mu)} G_{2,2} \geqslant 0 \\
& F_{0}-F_{1}+\frac{\gamma \mu(2-\gamma L)-1}{2(L-\mu)} G_{1,1}+\frac{1-\gamma L}{L-\mu} G_{1,2}-\frac{1}{2(L-\mu)} G_{2,2} \geqslant 0 \\
& G_{1,1}=1 \\
& G \succcurlyeq 0 .
\end{aligned}
$$

\diamond Assuming $g_{0}, g_{1} \in \mathbb{R}^{d}$ with $d \geqslant 2$, same optimal value as original problem!
\diamond For $d=1$ same optimal value by adding $\operatorname{rank}(G) \leqslant 1$.

Solving the SDP...

Fix $L=1, \mu=.1$ and solve the SDP for a few values of γ.

Solving the SDP...

Fix $L=1, \mu=.1$ and solve the SDP for a few values of γ.

Solving the SDP...

Fix $L=1, \mu=.1$ and solve the SDP for a few values of γ.

Observation: numerics match the (expected) $\max \left\{(1-\gamma L)^{2},(1-\gamma \mu)^{2}\right\}$.

Translation to worst-case guarantees

\diamond Let us rephrase our target: we look for $\rho(\gamma)$ (hopefully small) such that

$$
\left\|f^{\prime}\left(x_{1}\right)\right\| \leq \rho(\gamma)\left\|f^{\prime}\left(x_{0}\right)\right\|
$$

is satisfied for all $x_{0} \in \mathbb{R}^{d}, f \in \mathcal{F}_{\mu, \mathrm{L}}$, and $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$.

Translation to worst-case guarantees

\diamond Let us rephrase our target: we look for $\rho(\gamma)$ (hopefully small) such that

$$
\left\|f^{\prime}\left(x_{1}\right)\right\| \leq \rho(\gamma)\left\|f^{\prime}\left(x_{0}\right)\right\|
$$

is satisfied for all $x_{0} \in \mathbb{R}^{d}, f \in \mathcal{F}_{\mu, \mathrm{L}}$, and $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$.
\diamond Feasible points to the previous SDP correspond to lower bounds on $\rho(\gamma)$.

Translation to worst-case guarantees

\diamond Let us rephrase our target: we look for $\rho(\gamma)$ (hopefully small) such that

$$
\left\|f^{\prime}\left(x_{1}\right)\right\| \leq \rho(\gamma)\left\|f^{\prime}\left(x_{0}\right)\right\|
$$

is satisfied for all $x_{0} \in \mathbb{R}^{d}, f \in \mathcal{F}_{\mu, \mathrm{L}}$, and $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$.
\diamond Feasible points to the previous SDP correspond to lower bounds on $\rho(\gamma)$.
\diamond Traditionally: guarantees on $\rho(\gamma)$ obtained by combining inequalities (due to problem assumptions).

Exactly what a dual does!

Translation to worst-case guarantees

\diamond Let us rephrase our target: we look for $\rho(\gamma)$ (hopefully small) such that

$$
\left\|f^{\prime}\left(x_{1}\right)\right\| \leq \rho(\gamma)\left\|f^{\prime}\left(x_{0}\right)\right\|
$$

is satisfied for all $x_{0} \in \mathbb{R}^{d}, f \in \mathcal{F}_{\mu, \mathrm{L}}$, and $x_{1}=x_{0}-\gamma f^{\prime}\left(x_{0}\right)$.
\diamond Feasible points to the previous SDP correspond to lower bounds on $\rho(\gamma)$.
\diamond Traditionally: guarantees on $\rho(\gamma)$ obtained by combining inequalities (due to problem assumptions).

Exactly what a dual does!
\diamond Any $\rho(\gamma)$ that is valid for all d is a feasible point to the dual SDP.

Dual problem

\diamond Introduce dual variables τ, λ_{1} and λ_{2},

Dual problem

\diamond Introduce dual variables τ, λ_{1} and λ_{2},
\diamond dual problem becomes

$$
\begin{aligned}
& \operatorname{minimize}_{\tau, \lambda_{\mathbf{1}}, \lambda_{\mathbf{2}} \geqslant 0} \tau \\
& \text { subject to } S=\left[\begin{array}{cc}
-\frac{\lambda_{\mathbf{1}}(\gamma \mu-1)(\gamma L-1)}{L-\mu}-\tau & -\frac{\lambda_{\mathbf{1}}(\gamma(\mu+L)-2)}{2(L-\mu)} \\
-\frac{\lambda_{\mathbf{1}}(\gamma(\mu+L)-2)}{2(L-\mu)} & 1-\frac{\lambda_{\mathbf{1}}}{L-\mu}
\end{array}\right] \preccurlyeq 0 \\
& 0=\lambda_{\mathbf{1}}-\lambda_{\mathbf{2}} .
\end{aligned}
$$

Dual problem

\diamond Introduce dual variables τ, λ_{1} and λ_{2},
\diamond dual problem becomes

$$
\begin{aligned}
& \operatorname{minimize}_{\tau, \lambda_{\mathbf{1}}, \lambda_{\mathbf{2}} \geqslant 0} \tau \\
& \text { subject to } S=\left[\begin{array}{cc}
-\frac{\lambda_{\mathbf{1}}(\gamma \mu-1)(\gamma L-1)}{L-\mu}-\tau & -\frac{\lambda_{\mathbf{1}}(\gamma(\mu+L)-2)}{2(L-\mu)} \\
-\frac{\lambda_{\mathbf{1}}(\gamma(\mu+L)-2)}{2(L-\mu)} & 1-\frac{\lambda_{\mathbf{1}}}{L-\mu}
\end{array}\right] \preccurlyeq 0 \\
& 0=\lambda_{\mathbf{1}}-\lambda_{\mathbf{2}} .
\end{aligned}
$$

\diamond From any feasible point we get a valid rate $\rho^{2}(\gamma)=\tau(\gamma)$.

Dual problem

\diamond Introduce dual variables τ, λ_{1} and λ_{2},
\diamond dual problem becomes

$$
\begin{aligned}
& \operatorname{minimize}_{\tau, \lambda_{\mathbf{1}}, \lambda_{\mathbf{2}} \geqslant 0} \tau \\
& \text { subject to } S=\left[\begin{array}{cc}
-\frac{\lambda_{\mathbf{1}}(\gamma \mu-1)(\gamma L-1)}{L-\mu}-\tau & -\frac{\lambda_{\mathbf{1}}(\gamma(\mu+L)-2)}{2(L-\mu)} \\
-\frac{\lambda_{\mathbf{1}}(\gamma(\mu+L)-2)}{2(L-\mu)} & 1-\frac{\lambda_{\mathbf{1}}}{L-\mu}
\end{array}\right] \preccurlyeq 0 \\
& 0=\lambda_{1}-\lambda_{\mathbf{2}} .
\end{aligned}
$$

\diamond From any feasible point we get a valid rate $\rho^{2}(\gamma)=\tau(\gamma)$.
\diamond Strong duality holds (existence of a Slater point).

Solving the dual

Fix $L=1, \mu=.1$ and solve the dual SDP for a few values of γ.

Solving the dual

Fix $L=1, \mu=.1$ and solve the dual SDP for a few values of γ.

Solving the dual

Fix $L=1, \mu=.1$ and solve the dual SDP for a few values of γ.

Note: numerics match $\lambda_{1}=\lambda_{2}=\frac{2}{|\gamma|} \rho(\gamma)$ with $\rho(\gamma)=\max \{|1-\gamma L|,|1-\gamma \mu|\}$.

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{align*}
f_{0} \geqslant f_{1} & +\left\langle f^{\prime}\left(x_{1}\right), x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} \\
f_{1} \geqslant f_{0} & +\left\langle f^{\prime}\left(x_{0}\right), x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} \tag{2}
\end{align*}
$$

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{1} & +\left\langle f^{\prime}\left(x_{1}\right), x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{1} \\
f_{1} \geqslant f_{0} & +\left\langle f^{\prime}\left(x_{0}\right), x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{2}
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{rll}
f_{0} \geqslant f_{1} & +\left\langle f^{\prime}\left(x_{1}\right), x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{1}=\frac{2}{\gamma}(1-\mu \gamma) \\
f_{1} \geqslant f_{0} & +\left\langle f^{\prime}\left(x_{0}\right), x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{2}=\frac{2}{\gamma}(1-\mu \gamma)
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{rll}
f_{0} \geqslant f_{1} & +\left\langle f^{\prime}\left(x_{1}\right), x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & : \lambda_{1}=\frac{2}{\gamma}(1-\mu \gamma) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & \\
f_{1} \geqslant f_{0} & +\left\langle f^{\prime}\left(x_{0}\right), x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & : \lambda_{2}=\frac{2}{\gamma}(1-\mu \gamma) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}-\underbrace{\frac{2-\gamma(L+\mu)}{\gamma(L-\mu)}\left\|(1-\mu \gamma) f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2}}
$$

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{rll}
f_{0} \geqslant f_{1} & +\left\langle f^{\prime}\left(x_{1}\right), x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & : \lambda_{1}=\frac{2}{\gamma}(1-\mu \gamma) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & \\
f_{1} \geqslant f_{0} & +\left\langle f^{\prime}\left(x_{0}\right), x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & : \lambda_{2}=\frac{2}{\gamma}(1-\mu \gamma) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}-\underbrace{\frac{2-\gamma(L+\mu)}{\gamma(L-\mu)}\left\|(1-\mu \gamma) f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2}}_{\geqslant 0}
$$

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{rll}
f_{0} \geqslant f_{1} & +\left\langle f^{\prime}\left(x_{1}\right), x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & : \lambda_{1}=\frac{2}{\gamma}(1-\mu \gamma) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & \\
f_{1} \geqslant f_{0} & +\left\langle f^{\prime}\left(x_{0}\right), x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & : \lambda_{2}=\frac{2}{\gamma}(1-\mu \gamma) \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} &
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\begin{aligned}
\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} & \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}-\underbrace{\frac{2-\gamma(L+\mu)}{\gamma(L-\mu)}\left\|(1-\mu \gamma) f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2}}_{\geqslant 0} \\
& \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}
\end{aligned}
$$

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{1} & +\left\langle f^{\prime}\left(x_{1}\right), x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{1}=\frac{2}{\gamma}(1-\mu \gamma) \\
f_{1} \geqslant f_{0} & +\left\langle f^{\prime}\left(x_{0}\right), x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{2}=\frac{2}{\gamma}(1-\mu \gamma)
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\begin{aligned}
\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} & \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}-\underbrace{\frac{2-\gamma(L+\mu)}{\gamma(L-\mu)}\left\|(1-\mu \gamma) f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2}}_{\geqslant 0} \\
& \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}
\end{aligned}
$$

leading to $\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \leqslant\left(1-\frac{\mu}{L}\right)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}$

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{1} & +\left\langle f^{\prime}\left(x_{1}\right), x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{1}=\frac{2}{\gamma}(1-\mu \gamma) \\
f_{1} \geqslant f_{0} & +\left\langle f^{\prime}\left(x_{0}\right), x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{2}=\frac{2}{\gamma}(1-\mu \gamma)
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\begin{aligned}
\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} & \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}-\underbrace{\frac{2-\gamma(L+\mu)}{\gamma(L-\mu)}\left\|(1-\mu \gamma) f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2}}_{\geqslant 0, \text { or }=0 \text { when worst-case is achieved }} \\
& \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2},
\end{aligned}
$$

leading to $\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \leqslant\left(1-\frac{\mu}{L}\right)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}$

Recovering a "standard" proof

Gradient with $\gamma=\frac{1}{L}$. Perform weighted sum of two inequalities

$$
\begin{array}{lll}
f_{0} \geqslant f_{1} & +\left\langle f^{\prime}\left(x_{1}\right), x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{1}=\frac{2}{\gamma}(1-\mu \gamma) \\
f_{1} \geqslant f_{0} & +\left\langle f^{\prime}\left(x_{0}\right), x_{1}-x_{0}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2} & \\
& +\frac{\mu}{2(1-\mu / L)}\left\|x_{0}-x_{1}-\frac{1}{L}\left(f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right)\right\|^{2} & : \lambda_{2}=\frac{2}{\gamma}(1-\mu \gamma)
\end{array}
$$

with $\lambda_{1}, \lambda_{2} \geqslant 0$. Weighted sum can be reformulated as

$$
\begin{aligned}
\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} & \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}-\underbrace{\frac{2-\gamma(L+\mu)}{\gamma(L-\mu)}\left\|(1-\mu \gamma) f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{1}\right)\right\|^{2}}_{\geqslant 0, \text { or }=0 \text { when worst-case is achieved }} \\
& \leqslant(1-\gamma \mu)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2},
\end{aligned}
$$

leading to $\left\|f^{\prime}\left(x_{1}\right)\right\|^{2} \leqslant\left(1-\frac{\mu}{L}\right)^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}$ (tight).

Remarks

Dual interpretations:

Remarks

Dual interpretations:
\diamond Find smallest convergence rate that can be proved by a linear combination of interpolation inequalities.

Remarks

Dual interpretations:
\diamond Find smallest convergence rate that can be proved by a linear combination of interpolation inequalities.
\diamond From strong duality: in such settings, any (dimension-independent) convergence rate can be proved by linear combination of interpolation inequalities.

Remarks

Dual interpretations:
\diamond Find smallest convergence rate that can be proved by a linear combination of interpolation inequalities.
\diamond From strong duality: in such settings, any (dimension-independent) convergence rate can be proved by linear combination of interpolation inequalities.
\diamond Any dual feasible point can be translated into a "traditional" (SDP-less) proof.

Remarks

Dual interpretations:
\diamond Find smallest convergence rate that can be proved by a linear combination of interpolation inequalities.
\diamond From strong duality: in such settings, any (dimension-independent) convergence rate can be proved by linear combination of interpolation inequalities.
\diamond Any dual feasible point can be translated into a "traditional" (SDP-less) proof.

For finding proofs:

Remarks

Dual interpretations:
\diamond Find smallest convergence rate that can be proved by a linear combination of interpolation inequalities.
\diamond From strong duality: in such settings, any (dimension-independent) convergence rate can be proved by linear combination of interpolation inequalities.
\diamond Any dual feasible point can be translated into a "traditional" (SDP-less) proof.

For finding proofs:
\diamond the SDP might help by playing with both sides:

- play with primal (e.g., worst-case functions might be easy to identify),
- play with dual (e.g., dual variables might be easy to identify).

Remarks

Dual interpretations:
\diamond Find smallest convergence rate that can be proved by a linear combination of interpolation inequalities.
\diamond From strong duality: in such settings, any (dimension-independent) convergence rate can be proved by linear combination of interpolation inequalities.
\diamond Any dual feasible point can be translated into a "traditional" (SDP-less) proof.

For finding proofs:
\diamond the SDP might help by playing with both sides:

- play with primal (e.g., worst-case functions might be easy to identify),
- play with dual (e.g., dual variables might be easy to identify).
\diamond Standard tricks apply, e.g., trace norm minimization for promoting low-rank solutions (on primal or dual).

When does it work?

Problem setting:
\diamond pick a method
\diamond pick a class of functions
\diamond pick a type of inequality we want to reach
(e.g., via a convergence measure \& an initial condition).

When does it work?

Problem setting:
\diamond pick a method
\diamond pick a class of functions
\diamond pick a type of inequality we want to reach
(e.g., via a convergence measure \& an initial condition).

Why could we solve the previous PEP?

When does it work?

Problem setting:
\diamond pick a method
\diamond pick a class of functions
\diamond pick a type of inequality we want to reach
(e.g., via a convergence measure \& an initial condition).

Why could we solve the previous PEP?
\diamond Step size γ was "fixed beforehand"; no dependence on $f($.$) (non-adaptive).$

When does it work?

Problem setting:
\diamond pick a method
\diamond pick a class of functions
\diamond pick a type of inequality we want to reach
(e.g., via a convergence measure \& an initial condition).

Why could we solve the previous PEP?
\diamond Step size γ was "fixed beforehand"; no dependence on $f($.$) (non-adaptive).$
\diamond Class of function $\mathcal{F}_{\mu, \mathrm{L}}$ was encoded via linear constraints in G and F.

When does it work?

Problem setting:
\diamond pick a method
\diamond pick a class of functions
\diamond pick a type of inequality we want to reach
(e.g., via a convergence measure \& an initial condition).

Why could we solve the previous PEP?
\diamond Step size γ was "fixed beforehand"; no dependence on $f($.$) (non-adaptive).$
\diamond Class of function $\mathcal{F}_{\mu, \mathrm{L}}$ was encoded via linear constraints in G and F.
\diamond Convergence measure $\left\|f^{\prime}\left(x_{1}\right)\right\|^{2}$ was linear in terms of G and F.

When does it work?

Problem setting:
\diamond pick a method
\diamond pick a class of functions
\diamond pick a type of inequality we want to reach
(e.g., via a convergence measure \& an initial condition).

Why could we solve the previous PEP?
\diamond Step size γ was "fixed beforehand"; no dependence on $f($.$) (non-adaptive).$
\diamond Class of function $\mathcal{F}_{\mu, \mathrm{L}}$ was encoded via linear constraints in G and F.
\diamond Convergence measure $\left\|f^{\prime}\left(x_{1}\right)\right\|^{2}$ was linear in terms of G and F.
\diamond Initial condition $\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}$ was linear in terms of G and F.

When does it work?

Problem setting:
\diamond pick a method
\diamond pick a class of functions
\diamond pick a type of inequality we want to reach
(e.g., via a convergence measure \& an initial condition).

Why could we solve the previous PEP?
\diamond Step size γ was "fixed beforehand"; no dependence on $f($.$) (non-adaptive).$
\diamond Class of function $\mathcal{F}_{\mu, \mathrm{L}}$ was encoded via linear constraints in G and F.
\diamond Convergence measure $\left\|f^{\prime}\left(x_{1}\right)\right\|^{2}$ was linear in terms of G and F.
\diamond Initial condition $\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}$ was linear in terms of G and F.
... such conditions (or slight generalizations) apply in a variety of settings.

When does it work?

Problem setting:
\diamond pick a method
\diamond pick a class of functions
\diamond pick a type of inequality we want to reach
(e.g., via a convergence measure \& an initial condition).

Why could we solve the previous PEP?
\diamond Step size γ was "fixed beforehand"; no dependence on $f($.$) (non-adaptive).$
\diamond Class of function $\mathcal{F}_{\mu, \mathrm{L}}$ was encoded via linear constraints in G and F.
\diamond Convergence measure $\left\|f^{\prime}\left(x_{1}\right)\right\|^{2}$ was linear in terms of G and F.
\diamond Initial condition $\left\|f^{\prime}\left(x_{0}\right)\right\|^{2}$ was linear in terms of G and F.
... such conditions (or slight generalizations) apply in a variety of settings.

In other situations, one might want to relax the PEP for obtaining upper-bounds.

PEP genealogy ("my humble, biased, view on...")

Base methodological developments:

PEP genealogy ("my humble, biased, view on...")

Base methodological developments:

'14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods via SDPs, idea of using this machinery for designing methods.

PEP genealogy ("my humble, biased, view on...")

Base methodological developments:

'14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods via SDPs, idea of using this machinery for designing methods.
'16 Kim and Fessler (MP): design of an optimized method for smooth convex minimization, using SDPs.

PEP genealogy ("my humble, biased, view on...")

Base methodological developments:

'14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods via SDPs, idea of using this machinery for designing methods.
'16 Kim and Fessler (MP): design of an optimized method for smooth convex minimization, using SDPs.
'16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via integral quadratic constraints ("IQCs"). Essentially Lyapunov functions.
In this presentation:

PEP genealogy ("my humble, biased, view on...")

Base methodological developments:

'14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods via SDPs, idea of using this machinery for designing methods.
'16 Kim and Fessler (MP): design of an optimized method for smooth convex minimization, using SDPs.
'16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via integral quadratic constraints ("IQCs"). Essentially Lyapunov functions.
In this presentation:
'17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual interpretations of the SDPs, and few generalizations of the approach.

PEP genealogy ("my humble, biased, view on...")

Base methodological developments:

'14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods via SDPs, idea of using this machinery for designing methods.
'16 Kim and Fessler (MP): design of an optimized method for smooth convex minimization, using SDPs.
'16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via integral quadratic constraints ("IQCs"). Essentially Lyapunov functions.
In this presentation:
'17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual interpretations of the SDPs, and few generalizations of the approach.

- Other examples randomly picked from different works.

PEP genealogy ("my humble, biased, view on...")

Base methodological developments:

'14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods via SDPs, idea of using this machinery for designing methods.
'16 Kim and Fessler (MP): design of an optimized method for smooth convex minimization, using SDPs.
'16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via integral quadratic constraints ("IQCs"). Essentially Lyapunov functions.

In this presentation:

'17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual interpretations of the SDPs, and few generalizations of the approach.

- Other examples randomly picked from different works.
'19 T, Bach: PEPs for designing potential functions (impose structure in proofs).

But also:

PEP genealogy ("my humble, biased, view on...")

Base methodological developments:

'14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods via SDPs, idea of using this machinery for designing methods.
'16 Kim and Fessler (MP): design of an optimized method for smooth convex minimization, using SDPs.
'16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via integral quadratic constraints ("IQCs"). Essentially Lyapunov functions.

In this presentation:

'17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual interpretations of the SDPs, and few generalizations of the approach.

- Other examples randomly picked from different works.
'19 T, Bach: PEPs for designing potential functions (impose structure in proofs).

But also:

\diamond Fair amount of algorithmic analyses (and design) originated from SDPs (from different authors, examples below), in different settings.

PEP genealogy ("my humble, biased, view on...")

Base methodological developments:

'14 Drori and Teboulle (MP): upper bounds on worst-case behaviors of FO methods via SDPs, idea of using this machinery for designing methods.
'16 Kim and Fessler (MP): design of an optimized method for smooth convex minimization, using SDPs.
'16 Lessard, Recht, Packard (SIOPT): smaller SDPs for linear convergence, via integral quadratic constraints ("IQCs"). Essentially Lyapunov functions.

In this presentation:

'17 T, Hendrickx and Glineur: interpolation (tightness), and primal/dual interpretations of the SDPs, and few generalizations of the approach.

- Other examples randomly picked from different works.
'19 T, Bach: PEPs for designing potential functions (impose structure in proofs).

But also:

\diamond Fair amount of algorithmic analyses (and design) originated from SDPs (from different authors, examples below), in different settings.
\diamond We try keeping track of related works in the toolbox' manual (see later).

Going further

Going further

\diamond Sublinear rates? Via different types of guarantees, for example:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant C_{N}\left\|x_{0}-x_{\star}\right\|^{2},
$$

for some C_{N} (hopefully small and decreasing with N). Similar ideas and larger SDPs (typically of order $\mathrm{N} \times \mathrm{N}$).

Going further

\diamond Sublinear rates? Via different types of guarantees, for example:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant C_{N}\left\|x_{0}-x_{\star}\right\|^{2},
$$

for some C_{N} (hopefully small and decreasing with N). Similar ideas and larger SDPs (typically of order $\mathrm{N} \times \mathrm{N}$).
\diamond Optimizing/designing methods? For example, consider a gradient-type method

$$
x_{k}=x_{0}-\sum_{i=0}^{k-1} \gamma_{k, i} f^{\prime}\left(x_{i}\right)
$$

and try to solve minimax ("minimize (over $\left\{\gamma_{k, i}\right\}$) the worst-case").

Going further

\diamond Sublinear rates? Via different types of guarantees, for example:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant C_{N}\left\|x_{0}-x_{\star}\right\|^{2},
$$

for some C_{N} (hopefully small and decreasing with N). Similar ideas and larger SDPs (typically of order $\mathrm{N} \times \mathrm{N}$).
\diamond Optimizing/designing methods? For example, consider a gradient-type method

$$
x_{k}=x_{0}-\sum_{i=0}^{k-1} \gamma_{k, i} f^{\prime}\left(x_{i}\right)
$$

and try to solve minimax ("minimize (over $\left\{\gamma_{k, i}\right\}$) the worst-case"). For example, see: Drori and Teboulle (2014, 2016), Kim and Fessler (2016, 2018, 2019).

Going further

\diamond Sublinear rates? Via different types of guarantees, for example:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant C_{N}\left\|x_{0}-x_{\star}\right\|^{2},
$$

for some C_{N} (hopefully small and decreasing with N). Similar ideas and larger SDPs (typically of order $\mathrm{N} \times \mathrm{N}$).
\diamond Optimizing/designing methods? For example, consider a gradient-type method

$$
x_{k}=x_{0}-\sum_{i=0}^{k-1} \gamma_{k, i} f^{\prime}\left(x_{i}\right)
$$

and try to solve minimax ("minimize (over $\left\{\gamma_{k, i}\right\}$) the worst-case"). For example, see: Drori and Teboulle (2014, 2016), Kim and Fessler (2016, 2018, 2019).
\diamond Lyapunov functions? E.g., let $V_{k}=a\left\|x_{k}-x_{\star}\right\|^{2}+b\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+c\left(f\left(x_{k}\right)-f_{\star}\right)$.

Going further

\diamond Sublinear rates? Via different types of guarantees, for example:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant C_{N}\left\|x_{0}-x_{\star}\right\|^{2},
$$

for some C_{N} (hopefully small and decreasing with N). Similar ideas and larger SDPs (typically of order $\mathrm{N} \times \mathrm{N}$).
\diamond Optimizing/designing methods? For example, consider a gradient-type method

$$
x_{k}=x_{0}-\sum_{i=0}^{k-1} \gamma_{k, i} f^{\prime}\left(x_{i}\right)
$$

and try to solve minimax ("minimize (over $\left\{\gamma_{k, i}\right\}$) the worst-case"). For example, see: Drori and Teboulle (2014, 2016), Kim and Fessler (2016, 2018, 2019).
\diamond Lyapunov functions? E.g., let $V_{k}=a\left\|x_{k}-x_{\star}\right\|^{2}+b\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+c\left(f\left(x_{k}\right)-f_{\star}\right)$. Given ρ, feasibility problem

$$
" ? \exists a, b, c \text { s.t. } \quad V_{k+1} \leqslant \rho V_{k} "
$$

is convex.

Toy example: gradient descent

A few examples

Simplified proofs?

Concluding remarks and perspectives

"On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions"

Steepest descent with inexact search directions

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with $f \in \mathcal{F}_{\mu, L}$ (L-smooth μ-strongly convex).

Steepest descent with inexact search directions

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with $f \in \mathcal{F}_{\mu, L}$ (L-smooth μ-strongly convex).
Relative error model:

$$
\begin{equation*}
\left\|f^{\prime}\left(x_{i}\right)-d_{i}\right\| \leqslant \varepsilon\left\|f^{\prime}\left(x_{i}\right)\right\| \quad i=0,1, \ldots, \tag{1}
\end{equation*}
$$

Steepest descent with inexact search directions

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with $f \in \mathcal{F}_{\mu, L}$ (L-smooth μ-strongly convex).
Relative error model:

$$
\begin{equation*}
\left\|f^{\prime}\left(x_{i}\right)-d_{i}\right\| \leqslant \varepsilon\left\|f^{\prime}\left(x_{i}\right)\right\| \quad i=0,1, \ldots, \tag{1}
\end{equation*}
$$

Noisy gradient descent method with exact line search
Input: $f \in \mathcal{F}_{\mu, L}\left(\mathbb{R}^{d}\right), x_{0} \in \mathbb{R}^{d}, 0 \leq \varepsilon<1$.
for $i=0,1, \ldots$
Select any seach direction d_{i} that satisfies (1);

$$
\begin{aligned}
& \gamma=\operatorname{argmin}_{\gamma \in \mathbb{R}} f\left(x_{i}-\gamma d_{i}\right) \\
& x_{i+1}=x_{i}-\gamma d_{i}
\end{aligned}
$$

Steepest descent with inexact search directions

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with $f \in \mathcal{F}_{\mu, L}$ (L-smooth μ-strongly convex).
Relative error model:

$$
\begin{equation*}
\left\|f^{\prime}\left(x_{i}\right)-d_{i}\right\| \leqslant \varepsilon\left\|f^{\prime}\left(x_{i}\right)\right\| \quad i=0,1, \ldots, \tag{1}
\end{equation*}
$$

Noisy gradient descent method with exact line search
Input: $f \in \mathcal{F}_{\mu, L}\left(\mathbb{R}^{d}\right), x_{0} \in \mathbb{R}^{d}, 0 \leq \varepsilon<1$.
for $i=0,1, \ldots$
Select any seach direction d_{i} that satisfies (1);

$$
\begin{aligned}
& \gamma=\operatorname{argmin}_{\gamma \in \mathbb{R}} f\left(x_{i}-\gamma d_{i}\right) \\
& x_{i+1}=x_{i}-\gamma d_{i}
\end{aligned}
$$

Worst-case behavior:

$$
f\left(x_{i+1}\right)-f_{*} \leqslant\left(\frac{1-\kappa_{\varepsilon}}{1+\kappa_{\varepsilon}}\right)^{2}\left(f\left(x_{i}\right)-f_{*}\right) \quad i=0,1, \ldots
$$

where $\kappa_{\varepsilon}=\frac{\mu}{L} \frac{(1-\varepsilon)}{(1+\varepsilon)}$.

Problem formulation

In the same spirit as in previous slides:

$$
\begin{array}{rl}
\max _{f, x_{0}, x_{1}, d_{0}} & f\left(x_{1}\right)-f\left(x_{\star}\right) \\
\text { s.t. } f & f \in \mathcal{F}_{\mu, L} \\
& \left\langle f^{\prime}\left(x_{1}\right), x_{1}-x_{0}\right\rangle=0 \\
& \left\langle f^{\prime}\left(x_{1}\right), d_{0}\right\rangle=0 \\
& \left\|f^{\prime}\left(x_{0}\right)-d_{0}\right\|^{2} \leqslant \varepsilon^{2}\left\|f^{\prime}\left(x_{0}\right)\right\|^{2} \\
& f\left(x_{0}\right)-f\left(x_{\star}\right)=1
\end{array}
$$

SDP with based on $x_{0}, x_{1}, x_{\star}, g_{0}, g_{1}, d_{0}$, and $g_{\star}=0$.
Six interpolation conditions (each pair in set of 3 points) for replacing $f \in \mathcal{F}_{\mu, \mathrm{L}}$.

What does a proof look like?

Aggregate constraints:

What does a proof look like?

Aggregate constraints:

$$
\begin{aligned}
f_{0} & \geqslant f_{1}+\left\langle g_{1}, x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|g_{0}-g_{1}\right\|^{2}+\frac{\mu}{2\left(1-\frac{\mu}{L}\right)}\left\|x_{0}-x_{1}-\left(g_{0}-g_{1}\right) / L\right\|^{2} \\
f_{\star} & \geqslant f_{0}+\left\langle g_{0}, x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|g_{\star}-g_{0}\right\|^{2}+\frac{\mu}{2\left(1-\frac{\mu}{L}\right)}\left\|x_{\star}-x_{0}-\left(g_{\star}-g_{0}\right) / L\right\|^{2} \\
f_{\star} & \geqslant f_{1}+\left\langle g_{1}, x_{\star}-x_{1}\right\rangle+\frac{1}{2 L}\left\|g_{\star}-g_{1}\right\|^{2}+\frac{\mu}{2\left(1-\frac{\mu}{L}\right)}\left\|x_{\star}-x_{1}-\left(g_{\star}-g_{1}\right) / L\right\|^{2} \\
0 & =\left\langle g_{1}, d_{0}\right\rangle \\
0 & =\left\langle g_{1}, x_{1}-x_{0}\right\rangle \\
\varepsilon^{2}\left\|g_{0}\right\|^{2} & \geqslant\left\|g_{0}-d_{0}\right\|^{2}
\end{aligned}
$$

What does a proof look like?

Aggregate constraints:

$$
\begin{aligned}
f_{0} & \geqslant f_{1}+\left\langle g_{1}, x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|g_{0}-g_{1}\right\|^{2}+\frac{\mu}{2\left(1-\frac{\mu}{L}\right)}\left\|x_{0}-x_{1}-\left(g_{0}-g_{1}\right) / L\right\|^{2} \\
f_{\star} & \geqslant f_{0}+\left\langle g_{0}, x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|g_{\star}-g_{0}\right\|^{2}+\frac{\mu}{2\left(1-\frac{\mu}{L}\right)}\left\|x_{\star}-x_{0}-\left(g_{\star}-g_{0}\right) / L\right\|^{2} \\
f_{\star} & \geqslant f_{1}+\left\langle g_{1}, x_{\star}-x_{1}\right\rangle+\frac{1}{2 L}\left\|g_{\star}-g_{1}\right\|^{2}+\frac{\mu}{2\left(1-\frac{\mu}{L}\right)}\left\|x_{\star}-x_{1}-\left(g_{\star}-g_{1}\right) / L\right\|^{2} \\
0 & =\left\langle g_{1}, d_{0}\right\rangle \\
0 & =\left\langle g_{1}, x_{1}-x_{0}\right\rangle \\
\varepsilon^{2}\left\|g_{0}\right\|^{2} & \geqslant\left\|g_{0}-d_{0}\right\|^{2}
\end{aligned}
$$

with multipliers

What does a proof look like?

Aggregate constraints:

$$
\begin{aligned}
f_{0} & \geqslant f_{1}+\left\langle g_{1}, x_{0}-x_{1}\right\rangle+\frac{1}{2 L}\left\|g_{0}-g_{1}\right\|^{2}+\frac{\mu}{2\left(1-\frac{\mu}{L}\right)}\left\|x_{0}-x_{1}-\left(g_{0}-g_{1}\right) / L\right\|^{2} \\
f_{\star} & \geqslant f_{0}+\left\langle g_{0}, x_{\star}-x_{0}\right\rangle+\frac{1}{2 L}\left\|g_{\star}-g_{0}\right\|^{2}+\frac{\mu}{2\left(1-\frac{\mu}{L}\right)}\left\|x_{\star}-x_{0}-\left(g_{\star}-g_{0}\right) / L\right\|^{2} \\
f_{\star} & \geqslant f_{1}+\left\langle g_{1}, x_{\star}-x_{1}\right\rangle+\frac{1}{2 L}\left\|g_{\star}-g_{1}\right\|^{2}+\frac{\mu}{2\left(1-\frac{\mu}{L}\right)}\left\|x_{\star}-x_{1}-\left(g_{\star}-g_{1}\right) / L\right\|^{2} \\
0 & =\left\langle g_{1}, d_{0}\right\rangle \\
0 & =\left\langle g_{1}, x_{1}-x_{0}\right\rangle \\
\varepsilon^{2}\left\|g_{0}\right\|^{2} & \geqslant\left\|g_{0}-d_{0}\right\|^{2}
\end{aligned}
$$

with multipliers
$y_{1}=\frac{1-\kappa_{\varepsilon}}{1+\kappa_{\varepsilon}}, \quad y_{2}=\frac{2 \kappa_{\varepsilon}\left(1-\kappa_{\varepsilon}\right)}{\left(1+\kappa_{\varepsilon}\right)^{2}}, \quad y_{3}=\frac{2 \kappa_{\varepsilon}}{1+\kappa_{\varepsilon}}, \quad y_{4}=\frac{2}{L_{\varepsilon}+\mu_{\varepsilon}}, \quad y_{5}=1, \quad y_{6}=\frac{1-\kappa_{\varepsilon}}{\varepsilon L_{\varepsilon}\left(1+\kappa_{\varepsilon}\right)^{2}}$,
where we used $L_{\varepsilon}=L(1+\varepsilon), \mu_{\varepsilon}=\mu(1-\varepsilon)$, and $\kappa_{\varepsilon}=\mu_{\varepsilon} / L_{\varepsilon}$.

What does the proof look like?

Resulting inequality:

$$
\begin{aligned}
f_{1}-f_{\star} \leqslant & \left(\frac{1-\kappa_{\varepsilon}}{1+\kappa_{\varepsilon}}\right)^{2}\left(f_{0}-f_{\star}\right) \\
& -\frac{L \mu\left(L_{\varepsilon}-\mu_{\varepsilon}\right)\left(L_{\varepsilon}+3 \mu_{\varepsilon}\right)}{2(L-\mu)\left(L_{\varepsilon}+\mu_{\varepsilon}\right)^{2}}\left\|x_{0}+\alpha_{1} x_{1}-\left(1+\alpha_{1}\right) x_{\star}+\alpha_{2} g_{0}-\alpha_{3} g_{1}+\alpha_{4} d_{0}\right\|^{2} \\
& -\frac{2 L \mu \mu_{\varepsilon}}{(L-\mu)\left(L_{\varepsilon}+3 \mu_{\varepsilon}\right)}\left\|x_{1}-x_{\star}+\alpha_{5} g_{0}+\alpha_{6} g_{1}+\alpha_{7} d_{0}\right\|^{2} \\
& -\frac{\varepsilon}{L_{\varepsilon}+\mu_{\varepsilon}}\left\|g_{1}+\alpha_{8} g_{0}+\alpha_{9} d_{0}\right\|^{2}
\end{aligned}
$$

for some $\alpha_{1}, \ldots, \alpha_{9}$.

What does the proof look like?

Resulting inequality:

$$
\begin{aligned}
f_{1}-f_{\star} \leqslant & \left(\frac{1-\kappa_{\varepsilon}}{1+\kappa_{\varepsilon}}\right)^{2}\left(f_{0}-f_{\star}\right) \\
& -\frac{L \mu\left(L_{\varepsilon}-\mu_{\varepsilon}\right)\left(L_{\varepsilon}+3 \mu_{\varepsilon}\right)}{2(L-\mu)\left(L_{\varepsilon}+\mu_{\varepsilon}\right)^{2}}\left\|x_{0}+\alpha_{1} x_{1}-\left(1+\alpha_{1}\right) x_{\star}+\alpha_{2} g_{0}-\alpha_{3} g_{1}+\alpha_{4} d_{0}\right\|^{2} \\
& -\frac{2 L \mu \mu_{\varepsilon}}{(L-\mu)\left(L_{\varepsilon}+3 \mu_{\varepsilon}\right)}\left\|x_{1}-x_{\star}+\alpha_{5} g_{0}+\alpha_{6} g_{1}+\alpha_{7} d_{0}\right\|^{2} \\
& -\frac{\varepsilon}{L_{\varepsilon}+\mu_{\varepsilon}}\left\|g_{1}+\alpha_{8} g_{0}+\alpha_{9} d_{0}\right\|^{2}
\end{aligned}
$$

for some $\alpha_{1}, \ldots, \alpha_{9}$. Last three terms nonpositive, so

$$
f_{1}-f_{\star} \leqslant\left(\frac{1-\kappa_{\varepsilon}}{1+\kappa_{\varepsilon}}\right)^{2}\left(f_{0}-f_{\star}\right)
$$

What does the proof look like?

Resulting inequality:

$$
\begin{aligned}
f_{1}-f_{\star} \leqslant & \left(\frac{1-\kappa_{\varepsilon}}{1+\kappa_{\varepsilon}}\right)^{2}\left(f_{0}-f_{\star}\right) \\
& -\frac{L \mu\left(L_{\varepsilon}-\mu_{\varepsilon}\right)\left(L_{\varepsilon}+3 \mu_{\varepsilon}\right)}{2(L-\mu)\left(L_{\varepsilon}+\mu_{\varepsilon}\right)^{2}}\left\|x_{0}+\alpha_{1} x_{1}-\left(1+\alpha_{1}\right) x_{\star}+\alpha_{2} g_{0}-\alpha_{3} g_{1}+\alpha_{4} d_{0}\right\|^{2} \\
& -\frac{2 L \mu \mu_{\varepsilon}}{(L-\mu)\left(L_{\varepsilon}+3 \mu_{\varepsilon}\right)}\left\|x_{1}-x_{\star}+\alpha_{5} g_{0}+\alpha_{6} g_{1}+\alpha_{7} d_{0}\right\|^{2} \\
& -\frac{\varepsilon}{L_{\varepsilon}+\mu_{\varepsilon}}\left\|g_{1}+\alpha_{8} g_{0}+\alpha_{9} d_{0}\right\|^{2}
\end{aligned}
$$

for some $\alpha_{1}, \ldots, \alpha_{9}$. Last three terms nonpositive, so

$$
f_{1}-f_{\star} \leqslant\left(\frac{1-\kappa_{\varepsilon}}{1+\kappa_{\varepsilon}}\right)^{2}\left(f_{0}-f_{\star}\right)
$$

One actually has equality at optimality, due to a quadratic example.

What does a worst-case look like?

Quadratic worst-case function $f(x)=\frac{1}{2} x^{\top}\left(\begin{array}{cc}\mu & 0 \\ 0 & L\end{array}\right) x$:

What does a worst-case look like?

Quadratic worst-case function $f(x)=\frac{1}{2} x^{\top}\left(\begin{array}{cc}\mu & 0 \\ 0 & L\end{array}\right) x:$

"Efficient first-order methods for convex minimization: a constructive approach"

Optimized gradient methods

Smooth convex minimization setting:

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with f being L-smooth and convex, with black-box oracle $f^{\prime}($.$) available.$

Optimized gradient methods

Smooth convex minimization setting:

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with f being L-smooth and convex, with black-box oracle $f^{\prime}($.$) available.$

Lower bound for large-scale setting $(d \geqslant N+2)$ by Drori (2017):

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \geqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 \theta_{N}^{2}}
$$

with $\theta_{0}=1$, and:

$$
\theta_{i+1}= \begin{cases}\frac{1+\sqrt{4 \theta_{i}^{2}+1}}{2} & \text { if } i \leqslant N-2, \\ \frac{1+\sqrt{8 \theta_{i}^{2}+1}}{2} & \text { if } i=N-1 .\end{cases}
$$

Optimized gradient methods

Smooth convex minimization setting:

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with f being L-smooth and convex, with black-box oracle $f^{\prime}($.$) available.$

Lower bound for large-scale setting $(d \geqslant N+2)$ by Drori (2017):

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \geqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 \theta_{N}^{2}}=O\left(1 / N^{2}\right)
$$

with $\theta_{0}=1$, and:

$$
\theta_{i+1}= \begin{cases}\frac{1+\sqrt{4 \theta_{i}^{2}+1}}{2} & \text { if } i \leqslant N-2, \\ \frac{1+\sqrt{8 \theta_{i}^{2}+1}}{2} & \text { if } i=N-1\end{cases}
$$

Optimized gradient methods

Smooth convex minimization setting:

$$
\min _{x \in \mathbb{R}^{d}} f(x)
$$

with f being L-smooth and convex, with black-box oracle $f^{\prime}($.$) available.$

Lower bound for large-scale setting $(d \geqslant N+2)$ by Drori (2017):

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \geqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 \theta_{N}^{2}}=O\left(1 / N^{2}\right)
$$

with $\theta_{0}=1$, and:

$$
\theta_{i+1}= \begin{cases}\frac{1+\sqrt{4 \theta_{i}^{2}+1}}{} & \text { if } i \leqslant N-2, \\ \frac{1+\sqrt{8 \theta_{i}^{2}+1}}{2} & \text { if } i=N-1 .\end{cases}
$$

Coherent with historical lower bounds (Nemirovski \& Yudin 1983) and optimal methods (Nemirovski 1982), (Nesterov 1983).

Optimized gradient methods

Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)

Inputs: f, x_{0}, N.
For $i=1,2, \ldots$

$$
x_{i}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}}\left\{f(x): x \in x_{0}+\operatorname{span}\left\{f^{\prime}\left(x_{0}\right), \ldots, f^{\prime}\left(x_{i-1}\right)\right\}\right\}
$$

Worst-case guarantee:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 \theta_{N}^{2}}
$$

Optimized gradient methods

Three methods with the same (optimal) worst-case behavior

Optimized gradient method with exact line-search
Inputs: f, x_{0}, N.

$$
\begin{aligned}
& \text { For } i=1, \ldots, N \\
& \qquad \begin{aligned}
y_{i} & =\left(1-\frac{1}{\theta_{i}}\right) x_{i-1}+\frac{1}{\theta_{i}} x_{0} \\
d_{i} & =\left(1-\frac{1}{\theta_{i}}\right) f^{\prime}\left(x_{i-1}\right)+\frac{1}{\theta_{i}}\left(2 \sum_{j=0}^{i-1} \theta_{j} f^{\prime}\left(x_{j}\right)\right) \\
\alpha & =\underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} f\left(y_{i}+\alpha d_{i}\right) \\
x_{i} & =y_{i}+\alpha d_{i}
\end{aligned}
\end{aligned}
$$

Worst-case guarantee:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 \theta_{N}^{2}} .
$$

Optimized gradient methods

Three methods with the same (optimal) worst-case behavior

Optimized gradient method

Inputs: f, x_{0}, N.
For $i=1, \ldots, N$

$$
\begin{aligned}
& y_{i}=x_{i-1}-\frac{1}{L} f^{\prime}\left(x_{i-1}\right) \\
& z_{i}=x_{0}-\frac{2}{L} \sum_{j=0}^{i-1} \theta_{j} f^{\prime}\left(x_{j}\right) \\
& x_{i}=\left(1-\frac{1}{\theta_{i}}\right) y_{i}+\frac{1}{\theta_{i}} z_{i}
\end{aligned}
$$

Worst-case guarantee:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 \theta_{N}^{2}} .
$$

See also (Drori \& Teboulle 2014) and (Kim \& Fessler 2016).

Proof

Combine
\diamond interpolation conditions for $i, j \in\{\star, 0, \ldots, N\}$

$$
f\left(x_{i}\right) \geqslant f\left(x_{j}\right)+\left\langle f^{\prime}\left(x_{j}\right), x_{i}-x_{j}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{i}\right)-f^{\prime}\left(x_{j}\right)\right\|^{2}
$$

\diamond optimality conditions for span searches

$$
\begin{aligned}
\left\langle f^{\prime}\left(x_{i}\right), f^{\prime}\left(x_{j}\right)\right\rangle & =0 & & 0 \leqslant j<i \leqslant N \\
\left\langle f^{\prime}\left(x_{i}\right), x_{j}-x_{i}\right\rangle & =0 & & 1 \leqslant j \leqslant i \leqslant N
\end{aligned}
$$

with appropriate weights.

Proof

Combine
\diamond interpolation conditions for $i, j \in\{\star, 0, \ldots, N\}$

$$
f\left(x_{i}\right) \geqslant f\left(x_{j}\right)+\left\langle f^{\prime}\left(x_{j}\right), x_{i}-x_{j}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{i}\right)-f^{\prime}\left(x_{j}\right)\right\|^{2}
$$

\diamond optimality conditions for span searches

$$
\begin{aligned}
\left\langle f^{\prime}\left(x_{i}\right), f^{\prime}\left(x_{j}\right)\right\rangle & =0 & & 0 \leqslant j<i \leqslant N \\
\left\langle f^{\prime}\left(x_{i}\right), x_{j}-x_{i}\right\rangle & =0 & & 1 \leqslant j \leqslant i \leqslant N
\end{aligned}
$$

with appropriate weights. Weighted sum can be rewritten exactly as:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 \theta_{N}^{2}}-\frac{L}{2 \theta_{N}^{2}}\left\|x_{0}-x_{\star}-\frac{\theta_{N}}{L} f^{\prime}\left(x_{N}\right)-\frac{2}{L} \sum_{i=0}^{N-1} \theta_{i} f^{\prime}\left(x_{i}\right)\right\|^{2}
$$

Proof

Combine
\diamond interpolation conditions for $i, j \in\{\star, 0, \ldots, N\}$

$$
f\left(x_{i}\right) \geqslant f\left(x_{j}\right)+\left\langle f^{\prime}\left(x_{j}\right), x_{i}-x_{j}\right\rangle+\frac{1}{2 L}\left\|f^{\prime}\left(x_{i}\right)-f^{\prime}\left(x_{j}\right)\right\|^{2}
$$

\diamond optimality conditions for span searches

$$
\begin{aligned}
\left\langle f^{\prime}\left(x_{i}\right), f^{\prime}\left(x_{j}\right)\right\rangle & =0 & & 0 \leqslant j<i \leqslant N \\
\left\langle f^{\prime}\left(x_{i}\right), x_{j}-x_{i}\right\rangle & =0 & & 1 \leqslant j \leqslant i \leqslant N
\end{aligned}
$$

with appropriate weights. Weighted sum can be rewritten exactly as:

$$
f\left(x_{N}\right)-f\left(x_{\star}\right) \leqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 \theta_{N}^{2}}-\frac{L}{2 \theta_{N}^{2}}\left\|x_{0}-x_{\star}-\frac{\theta_{N}}{L} f^{\prime}\left(x_{N}\right)-\frac{2}{L} \sum_{i=0}^{N-1} \theta_{i} f^{\prime}\left(x_{i}\right)\right\|^{2}
$$

Proof for GFOM actually valid for a family of methods, that includes OGM.

Avoiding semidefinite programming modeling steps?

Avoiding semidefinite programming modeling steps?

PESTO example: an inexact fast gradient method
Minimize L-smooth convex function $f(x)$:

$$
\min _{x \in \mathbb{R}^{d}} f(x) .
$$

PESTO example: an inexact fast gradient method

Minimize L-smooth convex function $f(x)$:

$$
\min _{x \in \mathbb{R}^{d}} f(x) .
$$

Fast Gradient Method (FGM)

Input: $f \in \mathcal{F}_{0, L}\left(\mathbb{R}^{d}\right), x_{0}=y_{0} \in \mathbb{R}^{d}$.
For $i=0: N-1$

$$
\begin{aligned}
& x_{i+1}=y_{i}-\frac{1}{L} \nabla f\left(y_{i}\right) \\
& y_{i+1}=x_{i+1}+\frac{i-1}{i+2}\left(x_{i+1}-x_{i}\right)
\end{aligned}
$$

PESTO example: an inexact fast gradient method

Minimize L-smooth convex function $f(x)$:

$$
\min _{x \in \mathbb{R}^{d}} f(x) .
$$

Fast Gradient Method (FGM)

Input: $f \in \mathcal{F}_{0, L}\left(\mathbb{R}^{d}\right), x_{0}=y_{0} \in \mathbb{R}^{d}$.
For $i=0: N-1$

$$
\begin{aligned}
& x_{i+1}=y_{i}-\frac{1}{L} \nabla f\left(y_{i}\right) \\
& y_{i+1}=x_{i+1}+\frac{i-1}{i+2}\left(x_{i+1}-x_{i}\right)
\end{aligned}
$$

What if inexact gradient used instead? Relative inaccuracy model:

$$
\left\|\tilde{\nabla} f\left(y_{i}\right)-\nabla f\left(y_{i}\right)\right\| \leq \varepsilon\left\|\nabla f\left(y_{i}\right)\right\|
$$

PESTO example: an inexact fast gradient method

Minimize L-smooth convex function $f(x)$:

$$
\min _{x \in \mathbb{R}^{d}} f(x) .
$$

Fast Gradient Method (FGM)

Input: $f \in \mathcal{F}_{0, L}\left(\mathbb{R}^{d}\right), x_{0}=y_{0} \in \mathbb{R}^{d}$.
For $i=0: N-1$

$$
\begin{aligned}
& x_{i+1}=y_{i}-\frac{1}{L} \nabla f\left(y_{i}\right) \\
& y_{i+1}=x_{i+1}+\frac{i-1}{i+2}\left(x_{i+1}-x_{i}\right)
\end{aligned}
$$

What if inexact gradient used instead? Relative inaccuracy model:

$$
\left\|\widetilde{\nabla} \mathbf{f}\left(\mathbf{y}_{\mathbf{i}}\right)-\nabla f\left(y_{i}\right)\right\| \leq \varepsilon\left\|\nabla f\left(y_{i}\right)\right\| .
$$

PESTO example: an inexact fast gradient method

Minimize L-smooth convex function $f(x)$:

$$
\min _{x \in \mathbb{R}^{d}} f(x) .
$$

Fast Gradient Method (FGM)

Input: $f \in \mathcal{F}_{0, L}\left(\mathbb{R}^{d}\right), x_{0}=y_{0} \in \mathbb{R}^{d}$.
For $i=0: N-1$

$$
\begin{aligned}
& x_{i+1}=y_{i}-\frac{1}{L} \tilde{\nabla} \mathbf{f}\left(\mathbf{y}_{\mathrm{i}}\right) \\
& y_{i+1}=x_{i+1}+\frac{i-1}{i+2}\left(x_{i+1}-x_{i}\right)
\end{aligned}
$$

What if inexact gradient used instead? Relative inaccuracy model:

$$
\left\|\widetilde{\nabla} \mathbf{f}\left(\mathbf{y}_{\mathbf{i}}\right)-\nabla f\left(y_{i}\right)\right\| \leq \varepsilon\left\|\nabla f\left(y_{i}\right)\right\| .
$$

PESTO example: an inexact fast gradient method

```
% (0) Initialize an empty PEP
P = pep();
% (1) Set up the objective function
param.mu = 0; % strong convexity parameter
param.L = 1; % Smoothness parameter
F=P.DeclareFunction('SmoothStronglyConvex',param); % F is the objective function
% (2) Set up the starting point and initial condition
x0 = P.StartingPoint(); % x0 is some starting point
[xs, fs] = F.optimalPoint(); % xs is an optimal point, and fs=F(xs)
P.InitialCondition((x0-xs)^2 <= 1); % Add an initial condition | |x0-xs||^2<= 1
% (3) Algorithm
N = 7; % number of iterations
x = cell(N+1,1); % we store the iterates in a cell for convenience
x{1} = x0;
y = x0;
eps =.1;
for i = 1:N
    d = inexactsubgradient(y, F, eps);
    x{i+1} = y - 1/param.L * d;
    y=x{i+1}+(i-1)/(i+2)*(x{i+1}-x{i});
end
% (4) Set up the performance measure
[g, f] = F.oracle(x{N+1}); % g=grad F(x), f=F(x)
P.PerformanceMetric(f - fs); % Worst-case evaluated as F(x)-F(xs)
% (5) Solve the PEP
P.solve()
% (6) Evaluate the output
double(f - fs) % worst-case objective function accuracy
```


PESTO example: an inexact fast gradient method

\% (0) Initialize an empty PEP
$P=p e p()$;
\% (1) Set up the objective function
param.mu $=0 ; \quad$ \% strong convexity parameter
param. L $=1 ; \quad$ \% Smoothness parameter

F=P.DeclareFunction('SmoothStronglyConvex',param); \% F is the objective function
\% (2) Set up the starting point and initial condition
x0 $=$ P.StartingPoint(); \quad x0 is some starting point

```
x{1} = x0;
y = x0;
eps = .1;
for i = 1:N
    d = inexactsubgradient(y, F, eps);
    x{i+1} = y - 1/param.L * d;
    y = x{i+1} + (i-1)/(i+2) * (x{i+1} - x{i});
end
end
\% (4) Set up the performance measure
\([g, f]=F . \operatorname{cracle}(x\{N+1\}) ; \quad \% \operatorname{g=grad} F(x), f=F(x)\)
P.PerformanceMetric(f - fs); \% Worst-case evaluated as \(F(x)-F(x s)\)
\% (5) Solve the PEP
P.solve()
\% (6) Evaluate the output
double(f - fs) \% worst-case objective function accuracy
```


PESTO example: an inexact fast gradient method

Current examples within PESTO

Current examples within PESTO

Includes...
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond projected and proximal variants, and accelerated/momentum versions,
\diamond steepest descent, greedy/conjugate gradient methods,
\diamond Douglas-Rachford/three operator splitting,
\diamond Frank-Wolfe/conditional gradient,
\diamond inexact versions of gradient/fast gradient,
\diamond Krasnoselskii-Mann and Halpern fixed-point iterations,
\diamond mirror descent/Bregman gradient/NoLips,
\diamond stochastic methods: SAG, SAGA, SGD, and some variants.

Current examples within PESTO

Includes...
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond projected and proximal variants, and accelerated/momentum versions,
\diamond steepest descent, greedy/conjugate gradient methods,
\diamond Douglas-Rachford/three operator splitting,
\diamond Frank-Wolfe/conditional gradient,
\diamond inexact versions of gradient/fast gradient,
\diamond Krasnoselskii-Mann and Halpern fixed-point iterations,
\diamond mirror descent/Bregman gradient/NoLips,
\diamond stochastic methods: SAG, SAGA, SGD, and some variants.
PESTO contains most of recent PEP-related advances (including techniques by other groups). Clean updated references in user manual.

Current examples within PESTO

Includes...
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond projected and proximal variants, and accelerated/momentum versions,
\diamond steepest descent, greedy/conjugate gradient methods,
\diamond Douglas-Rachford/three operator splitting,
\diamond Frank-Wolfe/conditional gradient,
\diamond inexact versions of gradient/fast gradient,
\diamond Krasnoselskii-Mann and Halpern fixed-point iterations,
\diamond mirror descent/Bregman gradient/NoLips,
\diamond stochastic methods: SAG, SAGA, SGD, and some variants.
PESTO contains most of recent PEP-related advances (including techniques by other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Lieder, Lessard, Recht, Packard, Van Scoy, Hu, Cyrus, Gu, Yang, etc.

Current examples within PESTO

Includes...
\diamond subgradient, gradient, heavy-ball, fast gradient, optimized gradient methods,
\diamond projected and proximal variants, and accelerated/momentum versions,
\diamond steepest descent, greedy/conjugate gradient methods,
\diamond Douglas-Rachford/three operator splitting,
\diamond Frank-Wolfe/conditional gradient,
\diamond inexact versions of gradient/fast gradient,
\diamond Krasnoselskii-Mann and Halpern fixed-point iterations,
\diamond mirror descent/Bregman gradient/NoLips,
\diamond stochastic methods: SAG, SAGA, SGD, and some variants.
PESTO contains most of recent PEP-related advances (including techniques by other groups). Clean updated references in user manual.

Among others, see works by Drori, Teboulle, Kim, Fessler, Lieder, Lessard, Recht, Packard, Van Scoy, Hu, Cyrus, Gu, Yang, etc.

If you have additional examples, we would be glad to add them!

Toy example: gradient descent

A few examples

Simplified proofs?

Concluding remarks and perspectives

Francis Bach
"Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions"

Some opinions on PEPs

Pros/cons of PEPs

Some opinions on PEPs

Pros/cons of PEPs
(). Worst-case guarantees cannot be improved,

Some opinions on PEPs

Pros/cons of PEPs
(). Worst-case guarantees cannot be improved,
() fair amount of generalizations (finite sums, constraints, prox, etc.),

Some opinions on PEPs

Pros/cons of PEPs
(). Worst-case guarantees cannot be improved,
() fair amount of generalizations (finite sums, constraints, prox, etc.),
(-) allows reaching proofs that could barely be obtained (or intuited) by hand,

Some opinions on PEPs

Pros/cons of PEPs
(). Worst-case guarantees cannot be improved,
() fair amount of generalizations (finite sums, constraints, prox, etc.),
() allows reaching proofs that could barely be obtained (or intuited) by hand,
() SDPs typically become prohibitively large (with N and generalizations),

Some opinions on PEPs

Pros/cons of PEPs
(). Worst-case guarantees cannot be improved,
() fair amount of generalizations (finite sums, constraints, prox, etc.),
() allows reaching proofs that could barely be obtained (or intuited) by hand,
(:) SDPs typically become prohibitively large (with N and generalizations),
(:) proofs (may be) quite involved and hard to intuit,

Some opinions on PEPs

Pros/cons of PEPs
(). Worst-case guarantees cannot be improved,
(). fair amount of generalizations (finite sums, constraints, prox, etc.),
(). allows reaching proofs that could barely be obtained (or intuited) by hand,
(:) SDPs typically become prohibitively large (with N and generalizations),
(:) proofs (may be) quite involved and hard to intuit,
(:) proofs (may be) hard to generalize (e.g., to handle projections, backtracking),

Some opinions on PEPs

Pros/cons of PEPs
(). Worst-case guarantees cannot be improved,
(). fair amount of generalizations (finite sums, constraints, prox, etc.),
() allows reaching proofs that could barely be obtained (or intuited) by hand,
(:) SDPs typically become prohibitively large (with N and generalizations),
(:) proofs (may be) quite involved and hard to intuit,
(). proofs (may be) hard to generalize (e.g., to handle projections, backtracking),
() possible to "force" simple proofs (typically at some cost: e.g., loosing tightness).

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$).

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geqslant 0$, easy to show $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2}(\text { potential at iteration } k)
$$

see e.g., (Bansal \& Gupta 2019).

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geqslant 0$, easy to show $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2}(\text { potential at iteration } k)
$$

see e.g., (Bansal \& Gupta 2019).

Why is that nice? Very simple resulting proof:

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geqslant 0$, easy to show $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2}(\text { potential at iteration } k)
$$

see e.g., (Bansal \& Gupta 2019).

Why is that nice? Very simple resulting proof:

$$
\phi_{N}^{f} \leqslant \phi_{N-1}^{f} \leqslant \ldots \leqslant \phi_{0}^{f}
$$

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geqslant 0$, easy to show $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2} \text { (potential at iteration } k \text {), }
$$

see e.g., (Bansal \& Gupta 2019).

Why is that nice? Very simple resulting proof:

$$
N\left(f\left(x_{N}\right)-f_{\star}\right) \leq \phi_{N}^{f} \leqslant \phi_{N-1}^{f} \leqslant \ldots \leqslant \phi_{0}^{f}
$$

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geqslant 0$, easy to show $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2}(\text { potential at iteration } k),
$$

see e.g., (Bansal \& Gupta 2019).

Why is that nice? Very simple resulting proof:

$$
N\left(f\left(x_{N}\right)-f_{\star}\right) \leq \phi_{N}^{f} \leqslant \phi_{N-1}^{f} \leqslant \ldots \leqslant \phi_{0}^{f}=\frac{L}{2}\left\|x_{0}-x_{\star}\right\|^{2},
$$

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geqslant 0$, easy to show $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2}(\text { potential at iteration } k),
$$

see e.g., (Bansal \& Gupta 2019).

Why is that nice? Very simple resulting proof:

$$
N\left(f\left(x_{N}\right)-f_{\star}\right) \leq \phi_{N}^{f} \leqslant \phi_{N-1}^{f} \leqslant \ldots \leqslant \phi_{0}^{f}=\frac{L}{2}\left\|x_{0}-x_{\star}\right\|^{2}
$$

hence: $f\left(x_{N}\right)-f_{\star} \leqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 N}$.

Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\left.\frac{1}{L}\right)$.

For all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geqslant 0$, easy to show $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2}(\text { potential at iteration } k),
$$

see e.g., (Bansal \& Gupta 2019).

Why is that nice? Very simple resulting proof:

$$
N\left(f\left(x_{N}\right)-f_{\star}\right) \leq \phi_{N}^{f} \leqslant \phi_{N-1}^{f} \leqslant \ldots \leqslant \phi_{0}^{f}=\frac{L}{2}\left\|x_{0}-x_{\star}\right\|^{2},
$$

hence: $f\left(x_{N}\right)-f_{\star} \leqslant \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 N}$.
Potentials are not new; see e.g., Nesterov (1983), Beck \& Teboulle (2009), Hu \& Lessard (2017), Bansal \& Gupta (2019).

How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how x_{k} was generated and prove $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$.
() only need to study one iteration
() where does this ϕ_{k}^{f} comes from!? (structure and dependence on k)

How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how x_{k} was generated and prove $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$.
() only need to study one iteration
() where does this ϕ_{k}^{f} comes from!? (structure and dependence on k)

Starting point: candidate quadratic ϕ_{k}^{f} with all the available information at iteration k

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how x_{k} was generated and prove $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$.
() only need to study one iteration
(:) where does this ϕ_{k}^{f} comes from!? (structure and dependence on k)

Starting point: candidate quadratic ϕ_{k}^{f} with all the available information at iteration k

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

How to choose $a_{k}, b_{k}, c_{k}, d_{k}$'s?

How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how x_{k} was generated and prove $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$.
() only need to study one iteration
() where does this ϕ_{k}^{f} comes from!? (structure and dependence on k)

Starting point: candidate quadratic ϕ_{k}^{f} with all the available information at iteration k

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

How to choose $a_{k}, b_{k}, c_{k}, d_{k}$'s?

1. choice should satisfy " $\phi_{k+1}^{f} \leq \phi_{k}^{f \text { " }}$,

How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how x_{k} was generated and prove $\phi_{k+1}^{f} \leqslant \phi_{k}^{f}$.
() only need to study one iteration
() where does this ϕ_{k}^{f} comes from!? (structure and dependence on k)

Starting point: candidate quadratic ϕ_{k}^{f} with all the available information at iteration k

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

How to choose $a_{k}, b_{k}, c_{k}, d_{k}$'s?

1. choice should satisfy " $\phi_{k+1}^{f} \leq \phi_{k}^{f \text { " }}$,
2. choice should result in bound on $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.

How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$:

$$
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} ?
$$

How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$:

$$
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} ?
$$

(notations: the set of such pairs $\left(\phi_{k}^{f}, \phi_{k+1}^{f}\right)$ is denoted \mathcal{V}_{k}.)

How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$:

$$
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} ?
$$

(notations: the set of such pairs $\left(\phi_{k}^{f}, \phi_{k+1}^{f}\right)$ is denoted \mathcal{V}_{k}.)

Answer:

$$
\begin{gathered}
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} \text { for all L-smooth convex } f, x_{k} \in \mathbb{R}^{d}, \text { and } d \in \mathbb{N} \\
\Leftrightarrow
\end{gathered}
$$

some small-sized linear matrix inequality (LMI) is feasible.

How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$:

$$
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} ?
$$

(notations: the set of such pairs $\left(\phi_{k}^{f}, \phi_{k+1}^{f}\right)$ is denoted \mathcal{V}_{k}.)

Answer:

$$
\begin{gathered}
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} \text { for all L-smooth convex } f, x_{k} \in \mathbb{R}^{d}, \text { and } d \in \mathbb{N} \\
\Leftrightarrow
\end{gathered}
$$

some small-sized linear matrix inequality (LMI) is feasible.
Furthermore: LMI is linear in parameters $\left\{a_{k}, b_{k}, c_{k}, d_{k}\right\}_{k}$.

How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$:

$$
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} ?
$$

(notations: the set of such pairs $\left(\phi_{k}^{f}, \phi_{k+1}^{f}\right)$ is denoted \mathcal{V}_{k}.)

Answer:

$$
\begin{gathered}
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} \text { for all L-smooth convex } f, x_{k} \in \mathbb{R}^{d} \text {, and } d \in \mathbb{N} \\
\Leftrightarrow
\end{gathered}
$$

some small-sized linear matrix inequality (LMI) is feasible.
Furthermore: LMI is linear in parameters $\left\{a_{k}, b_{k}, c_{k}, d_{k}\right\}_{k}$.

In others words:
\diamond efficient (convex) representation of \mathcal{V}_{k} available!

How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all L-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$:

$$
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} ?
$$

(notations: the set of such pairs $\left(\phi_{k}^{f}, \phi_{k+1}^{f}\right)$ is denoted \mathcal{V}_{k}.)

Answer:

$$
\begin{gathered}
\phi_{k+1}^{f} \leqslant \phi_{k}^{f} \text { for all L-smooth convex } f, x_{k} \in \mathbb{R}^{d} \text {, and } d \in \mathbb{N} \\
\Leftrightarrow
\end{gathered}
$$

some small-sized linear matrix inequality (LMI) is feasible.
Furthermore: LMI is linear in parameters $\left\{a_{k}, b_{k}, c_{k}, d_{k}\right\}_{k}$.

In others words:
\diamond efficient (convex) representation of \mathcal{V}_{k} available!
\diamond idea: apply previous reformulation tricks to reformulate:

$$
0 \geqslant \max _{f} \phi_{k+1}^{f}-\phi_{k}^{f} .
$$

Dual is a feasibility problem, linear in $\left\{a_{k}, b_{k}, c_{k}, d_{k}\right\}_{k}$.

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable b_{N} using such potentials?

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable b_{N} using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{\mathbf{1}}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable b_{N} using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{\mathbf{1}}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable b_{N} using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{\mathbf{1}}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable b_{N} using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{\mathbf{1}}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

1. Solve the SDP for some values of N.
2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$'s for some values of N.

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable b_{N} using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{\mathbf{1}}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

1. Solve the SDP for some values of N.
2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$'s for some values of N.
3. Try to simplify the ϕ_{k}^{f} 's without loosing too much.

How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable b_{N} using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{\mathbf{1}}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

1. Solve the SDP for some values of N.
2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$'s for some values of N.
3. Try to simplify the ϕ_{k}^{f} 's without loosing too much.
4. Prove target result by analytically playing with \mathcal{V}_{k} (i.e., study single iteration).

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}
$$

$$
\begin{array}{r}
N= \\
b_{N}=
\end{array}
$$

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}
$$

$$
\begin{aligned}
N & =1 \\
b_{N} & =
\end{aligned}
$$

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}
$$

$$
\begin{aligned}
N & =1 \\
b_{N} & =4
\end{aligned}
$$

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
N= & 1 \\
b_{N}= & 2
\end{aligned}
$$

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
N= & 1
\end{aligned} \begin{array}{lll}
2 & 3 \\
b_{N}= & 4 & 9
\end{array} 16
$$

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N= & 1 & 2 & 3 & 4 & \cdots & 100 \\
b_{N} & - & 9 & 16 & 25 & & 10201
\end{array} \\
& b_{N}=\begin{array}{llllll}
4 & 9 & 16 & 25 & \ldots & 10201
\end{array}
\end{aligned}
$$

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N= & 1 & 2 & 3 & 4 & \cdots & 100
\end{array} \\
& b_{N}=\begin{array}{llllll}
4 & 9 & 16 & 25 & \ldots & 10201
\end{array}
\end{aligned}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$'s for some values of N.

Fixed horizon $N=100, L=1$, and

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

Fixed horizon $N=100, L=1$, and

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N= & 1 & 2 & 3 & 4 & \cdots & 100
\end{array} \\
& b_{N}=\begin{array}{llllll}
4 & 9 & 16 & 25 & \ldots & 10201
\end{array}
\end{aligned}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$'s for some values of N.

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N & = & 1 & 2 & 3 & 4 & \ldots \\
100 \\
b_{N} & = & 4 & 9 & 16 & 25 & \ldots \\
10201
\end{array}
\end{aligned}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$'s for some values of N.
3. Try to simplify the ϕ_{k}^{f} 's without loosing too much.

Tentative simplification \#1: $d_{k}=(2 k+1) L$
Tentative simplification \#2: $a_{k}=L^{2}, c_{k}=0$
Tentative simplification \#3: $d_{k}=0$

$V_{k}=\binom{x_{k}-x_{\star}}{f^{\prime}\left(x_{k}\right)}^{\top}\left[\left(\begin{array}{ll}a_{k} & c_{k} \\ c_{k} & b_{k}\end{array}\right) \otimes I_{d}\right]\binom{x_{k}-x_{\star}}{f^{\prime}\left(x_{k}\right)}+(2 k+1) L\left(f\left(x_{k}\right)-f\left(x_{\star}\right)\right)$

$V_{k}=\binom{x_{k}-x_{\star}}{f^{\prime}\left(x_{k}\right)}^{\top}\left[\left(\begin{array}{cc}L^{2} & 0 \\ 0 & b_{k}\end{array}\right) \otimes I_{d}\right]\binom{x_{k}-x_{\star}}{f^{\prime}\left(x_{k}\right)}+(2 k+1) L\left(f\left(x_{k}\right)-f\left(x_{\star}\right)\right)$

$$
V_{k}=\binom{x_{k}-x_{\star}}{f^{\prime}\left(x_{k}\right)}^{\top}\left[\left(\begin{array}{cc}
a_{k} & c_{k} \\
c_{k} & b_{k}
\end{array}\right) \otimes I_{d}\right]\binom{x_{k}-x_{\star}}{f^{\prime}\left(x_{k}\right)}+0\left(f\left(x_{k}\right)-f\left(x_{\star}\right)\right)
$$

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N & = & 1 & 2 & 3 & 4 & \ldots \\
100 \\
b_{N} & = & 4 & 9 & 16 & 25 & \ldots \\
10201
\end{array}
\end{aligned}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$'s for some values of N.
3. Try to simplify the ϕ_{k}^{f} 's without loosing too much.

Tentative simplification \#1: $d_{k}=(2 k+1) L$
Tentative simplification \#2: $a_{k}=L^{2}, c_{k}=0$
Tentative simplification \#3: $d_{k}=0$

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N & = & 1 & 2 & 3 & 4 & \ldots \\
100 \\
b_{N} & = & 4 & 9 & 16 & 25 & \ldots \\
10201
\end{array}
\end{aligned}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$'s for some values of N.
3. Try to simplify the ϕ_{k}^{f} 's without loosing too much.

Tentative simplification \#1: $d_{k}=(2 k+1) L$ [success]
Tentative simplification \#2: $a_{k}=L^{2}, c_{k}=0$ [success]
Tentative simplification \#3: $d_{k}=0$ [fail]

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leqslant \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N & = & 1 & 2 & 3 & 4 & \ldots \\
100 \\
b_{N} & = & 4 & 9 & 16 & 25 & \ldots \\
10201
\end{array}
\end{aligned}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$'s for some values of N.
3. Try to simplify the ϕ_{k}^{f} 's without loosing too much.

Tentative simplification \#1: $d_{k}=(2 k+1) L$ [success]
Tentative simplification \#2: $a_{k}=L^{2}, c_{k}=0$ [success]
Tentative simplification \#3: $d_{k}=0$ [fail]
4. Prove target result by analytically playing with \mathcal{V}_{k} :

$$
\phi_{k}^{f}\left(x_{k}\right)=(2 k+1) L\left(f\left(x_{k}\right)-f_{\star}\right)+k(k+2)\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+L^{2}\left\|x_{k}-x_{\star}\right\|^{2},
$$

hence $f\left(x_{N}\right)-f_{\star}=O\left(N^{-1}\right)$ and $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}=O\left(N^{-2}\right)$.

Potential functions

Simpler proof structures:

Potential functions

Simpler proof structures:
\diamond allow keeping SDP formulations more tractable,

Potential functions

Simpler proof structures:
\diamond allow keeping SDP formulations more tractable,
\diamond hence usable with more complex settings (e.g., randomizations, stochasticity).

Potential functions

Simpler proof structures:
\diamond allow keeping SDP formulations more tractable,
\diamond hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:

Potential functions

Simpler proof structures:
\diamond allow keeping SDP formulations more tractable,
\diamond hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:
\diamond all previous variants (everything that fits into regular PEPs)

Potential functions

Simpler proof structures:
\diamond allow keeping SDP formulations more tractable,
\diamond hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:
\diamond all previous variants (everything that fits into regular PEPs)
\diamond stochastic variants (e.g., finite sum, bounded variance, over-parametrization),

Potential functions

Simpler proof structures:
\diamond allow keeping SDP formulations more tractable,
\diamond hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:
\diamond all previous variants (everything that fits into regular PEPs)
\diamond stochastic variants (e.g., finite sum, bounded variance, over-parametrization),
\diamond randomized block-coordinate variants,

Potential functions

Simpler proof structures:
\diamond allow keeping SDP formulations more tractable,
\diamond hence usable with more complex settings (e.g., randomizations, stochasticity).

More examples:
\diamond all previous variants (everything that fits into regular PEPs)
\diamond stochastic variants (e.g., finite sum, bounded variance, over-parametrization),
\diamond randomized block-coordinate variants,
... but also for designing methods!

Toy example: gradient descent

A few examples

Simplified proofs?

Concluding remarks and perspectives

Take-home message

Finding a worst-case \equiv solving an optimization problem

Take-home message

Finding a worst-case \equiv solving an optimization problem

Duality between worst-case scenarios \& combinations of inequalities!

Take-home message

Finding a worst-case \equiv solving an optimization problem

Duality between worst-case scenarios \& combinations of inequalities!

PEP: a way to "brute-force" \& "benchmark" such proofs.

Concluding remarks

Performance estimation:

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities),
proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!
\diamond step forward to "reproducible theory".

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!
\diamond step forward to "reproducible theory".

Difficulties:

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!
\diamond step forward to "reproducible theory".

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
key is to find good assumptions/parametrization

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!
\diamond step forward to "reproducible theory".

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
key is to find good assumptions/parametrization
\diamond closed-form solutions might be involved (if we care about tightness).

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!
\diamond step forward to "reproducible theory".

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
key is to find good assumptions/parametrization
\diamond closed-form solutions might be involved (if we care about tightness).

Ongoing research directions, open questions:

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!
\diamond step forward to "reproducible theory".

Difficulties:
\diamond suffers from standard caveats of worst-case analyses, key is to find good assumptions/parametrization
\diamond closed-form solutions might be involved (if we care about tightness).

Ongoing research directions, open questions:
\diamond computer-assisted algorithmic design,

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!
\diamond step forward to "reproducible theory".

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
key is to find good assumptions/parametrization
\diamond closed-form solutions might be involved (if we care about tightness).

Ongoing research directions, open questions:
\diamond computer-assisted algorithmic design,
\diamond adaptive \& structure-exploiting methods,

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!
\diamond step forward to "reproducible theory".

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
key is to find good assumptions/parametrization
\diamond closed-form solutions might be involved (if we care about tightness).

Ongoing research directions, open questions:
\diamond computer-assisted algorithmic design,
\diamond adaptive \& structure-exploiting methods,
\diamond non-convex \& non-Euclidean settings?

Concluding remarks

Performance estimation:
\diamond numerically allows obtaining tight bounds (rigorous baselines),
\diamond results can only be improved by changing algorithm and/or assumptions,
\diamond helps designing analytical proofs (reduces to linear combinations of inequalities), proofs can be engineered using numerics \& symbolic computations!
\diamond fast prototyping:
before trying to prove your new FO method works; give PEP a try!
\diamond step forward to "reproducible theory".

Difficulties:
\diamond suffers from standard caveats of worst-case analyses,
key is to find good assumptions/parametrization
\diamond closed-form solutions might be involved (if we care about tightness).

Ongoing research directions, open questions:
\diamond computer-assisted algorithmic design,
\diamond adaptive \& structure-exploiting methods,
\diamond non-convex \& non-Euclidean settings?
\diamond Higher order methods?

Concluding remarks

Concluding remarks

A few other recent directions (on my webpage):
\diamond Simplified proofs (Lyapunov functions and potentials),

Concluding remarks

A few other recent directions (on my webpage):
\diamond Simplified proofs (Lyapunov functions and potentials),
\diamond Stochastic/randomized methods,

Concluding remarks

A few other recent directions (on my webpage):
\diamond Simplified proofs (Lyapunov functions and potentials),
\diamond Stochastic/randomized methods,

Concluding remarks

A few other recent directions (on my webpage):
\diamond Simplified proofs (Lyapunov functions and potentials),
\diamond Stochastic/randomized methods,
\diamond Mirror descent/Bregman gradient/NoLips/...

Concluding remarks

A few other recent directions (on my webpage):
\diamond Simplified proofs (Lyapunov functions and potentials),
\diamond Stochastic/randomized methods,
\diamond Mirror descent/Bregman gradient/NoLips/...
\diamond Monotone inclusions, splitting methods,

Concluding remarks

A few other recent directions (on my webpage):
\diamond Simplified proofs (Lyapunov functions and potentials),
\diamond Stochastic/randomized methods,
\diamond Mirror descent/Bregman gradient/NoLips/...
\diamond Monotone inclusions, splitting methods,
\diamond Our first attempts to the analysis of adaptive methods (Polyak step sizes \& line-searches).

Concluding remarks

A few other recent directions (on my webpage):
\diamond Simplified proofs (Lyapunov functions and potentials),
\diamond Stochastic/randomized methods,
\diamond Mirror descent/Bregman gradient/NoLips/...
\diamond Monotone inclusions, splitting methods,
\diamond Our first attempts to the analysis of adaptive methods (Polyak step sizes \& line-searches).

Shameless advertisement:
\diamond Radu-Alexandru Dragomir, T, Alexandre d'Aspremont, Jérôme Bolte. "Optimal complexity and certification of Bregman first-order methods". Preprint 2019.
\diamond Mathieu Barré, T, Alexandre d'Aspremont. "Complexity Guarantees for Polyak Steps with Momentum". COLT 2020 (to appear).
\diamond Ernest Ryu, T, Carolina Bergeling, Pontus Giselsson. "Operator splitting performance estimation: Tight contraction factors and optimal parameter selection". Siopt 2020 (to appear).

Main references

References more thoroughly treated in the papers. Explicitly mentioned in this presentation:
\diamond Yurii Nesterov. "A method for solving the convex programming problem with convergence rate $O\left(1 / k^{2}\right)$. Soviet Mathematics Doklady, 1983.
\diamond Arkadi Nemirovskii, David Yudin. "Problem complexity and method efficiency in optimization". Wiley-Interscience, 1983.
\diamond Amir Beck, Marc Teboulle. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems". SIAM Journal on Imaging Sciences, 2009.
\diamond Yoel Drori, Marc Teboulle. "Performance of first-order methods for smooth convex minimization: a novel approach". Mathematical Programming, 2014.
\diamond Donghwan Kim, Jeffrey Fessler. "Optimized first-order methods for smooth convex minimization". Mathematical Programming, 2016.
\diamond Yoel Drori, Marc Teboulle. "An optimal variant of Kelley's cutting-plane method". Mathematical Programming, 2016.
\diamond Laurent Lessard, Benjamin Recht, Andrew Packard. "Analysis and design of optimization algorithms via integral quadratic constraints". SIAM Journal on Optimization, 2016.
\diamond Yoel Drori. "The exact information-based complexity of smooth convex minimization". Journal of Complexity, 2017.
\diamond Bin Hu, Laurent Lessard. "Dissipativity Theory for Nesterov's Accelerated Method". ICML, 2017.
\diamond Donghwan Kim, Jeffrey Fessler. "Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functions". Preprint, 2018.
\diamond Donghwan Kim. "Accelerated Proximal Point method for Maximally Monotone Operators". Preprint, 2019.
\diamond Nikhil Bansal, Anupam Gupta. "Potential-function proofs for first-order methods". Theory of Computing, 2019.

Thanks! Questions?

www.di.ens.fr/~ataylor/
AdrienTaylor/Performance-Estimation-Toolbox on Github

Presentation mainly based on:
\diamond T, François Glineur, Julien Hendrickx. "Smooth strongly convex interpolation and exact worst-case performance of first-order methods". Mathematical Programming, 2017.
\diamond Etienne de Klerk, François Glineur, T. "On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions". Optimization Letters, 2017.
\diamond T, François Glineur, Julien Hendrickx. "Performance Estimation Toolbox (PESTO): automated worst-case analysis of first-order optimization methods" CDC, 2017.
\diamond Yoel Drori, T. "Efficient first-order methods for convex minimization: a constructive approach". Mathematical Programming, 2019.
\diamond T, Francis Bach. "Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions". COLT, 2019.

