
Smoothness in nonsmooth optimization

(Newtonian ideas for partly smooth equations)

Adrian Lewis

Joint work with: D. Drusvyatskiy, X.Y. Han, A. Ioffe,

J. Liang, M.L. Overton, T. Tian, C. Wylie

September 2020

ORIE Cornell One World Optimization Seminar

Introduction: three questions

Question 1: Why is smoothness

often inherent in nonsmooth

optimization and equations?

Question 2: Can Newton

methods use this smoothness?

Example: minQ f becomes

−∇f (x) ∈ NQ(x).

Projected gradient methods

x ← ProjQ
(
x − γ∇f (x)

)
identify smoothness in Q.

Newtonian acceleration?

Question 3: Superlinear

convergence for black box

nonsmooth optimization?

Example: Eigenvalue

optimization.

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

1/24

Introduction: three questions

Question 1: Why is smoothness

often inherent in nonsmooth

optimization and equations?

Question 2: Can Newton

methods use this smoothness?

Example: minQ f becomes

−∇f (x) ∈ NQ(x).

Projected gradient methods

x ← ProjQ
(
x − γ∇f (x)

)
identify smoothness in Q.

Newtonian acceleration?

Question 3: Superlinear

convergence for black box

nonsmooth optimization?

Example: Eigenvalue

optimization.

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

1/24

Introduction: three questions

Question 1: Why is smoothness

often inherent in nonsmooth

optimization and equations?

Question 2: Can Newton

methods use this smoothness?

Example: minQ f becomes

−∇f (x) ∈ NQ(x).

Projected gradient methods

x ← ProjQ
(
x − γ∇f (x)

)
identify smoothness in Q.

Newtonian acceleration?

Question 3: Superlinear

convergence for black box

nonsmooth optimization?

Example: Eigenvalue

optimization.

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

1/24

Introduction: three questions

Question 1: Why is smoothness

often inherent in nonsmooth

optimization and equations?

Question 2: Can Newton

methods use this smoothness?

Example: minQ f becomes

−∇f (x) ∈ NQ(x).

Projected gradient methods

x ← ProjQ
(
x − γ∇f (x)

)
identify smoothness in Q.

Newtonian acceleration?

Question 3: Superlinear

convergence for black box

nonsmooth optimization?

Example: Eigenvalue

optimization.

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

1/24

Introduction: three questions

Question 1: Why is smoothness

often inherent in nonsmooth

optimization and equations?

Question 2: Can Newton

methods use this smoothness?

Example: minQ f becomes

−∇f (x) ∈ NQ(x).

Projected gradient methods

x ← ProjQ
(
x − γ∇f (x)

)
identify smoothness in Q.

Newtonian acceleration?

Question 3: Superlinear

convergence for black box

nonsmooth optimization?

Example: Eigenvalue

optimization.

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

1/24

Inherent structure: an example

The numerical radius of an n-by-n complex matrix A,

ρ(A) = max
‖u‖=1

|u∗Au|,

satisfies the “power inequality” (Berger ’65): for k = 1, 2, . . .

1

2
‖Ak‖2 ≤ ρ(Ak) ≤

(
ρ(A)

)k
,

and so controls transient stability in dynamics x ← Ax .

Optimizing ρ often results in unusual matrices. . .

Example: For random matrices Y , proximal matrices A minimizing

ρ(A) + λ‖A− Y ‖2

often have disc fields of values {u∗Au : ‖u‖ = 1}.

2/24

Inherent structure: an example

The numerical radius of an n-by-n complex matrix A,

ρ(A) = max
‖u‖=1

|u∗Au|,

satisfies the “power inequality” (Berger ’65): for k = 1, 2, . . .

1

2
‖Ak‖2 ≤ ρ(Ak) ≤

(
ρ(A)

)k
,

and so controls transient stability in dynamics x ← Ax .

Optimizing ρ often results in unusual matrices. . .

Example: For random matrices Y , proximal matrices A minimizing

ρ(A) + λ‖A− Y ‖2

often have disc fields of values {u∗Au : ‖u‖ = 1}.

2/24

Inherent structure: an example

The numerical radius of an n-by-n complex matrix A,

ρ(A) = max
‖u‖=1

|u∗Au|,

satisfies the “power inequality” (Berger ’65): for k = 1, 2, . . .

1

2
‖Ak‖2 ≤ ρ(Ak) ≤

(
ρ(A)

)k
,

and so controls transient stability in dynamics x ← Ax .

Optimizing ρ often results in unusual matrices. . .

Example: For random matrices Y , proximal matrices A minimizing

ρ(A) + λ‖A− Y ‖2

often have disc fields of values {u∗Au : ‖u‖ = 1}.

2/24

Inherent structure: an example

The numerical radius of an n-by-n complex matrix A,

ρ(A) = max
‖u‖=1

|u∗Au|,

satisfies the “power inequality” (Berger ’65): for k = 1, 2, . . .

1

2
‖Ak‖2 ≤ ρ(Ak) ≤

(
ρ(A)

)k
,

and so controls transient stability in dynamics x ← Ax .

Optimizing ρ often results in unusual matrices. . .

Example: For random matrices Y , proximal matrices A minimizing

ρ(A) + λ‖A− Y ‖2

often have disc fields of values {u∗Au : ‖u‖ = 1}.

2/24

Random proximal points (via cvx) are often disk matrices

1− inner radius
ρ(A)

(via chebfun)

algebraic deviation

from disk

distance to

singularity

distance to null

Jordan block

n
2 3 4 5 6 7 8 9 10

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

1-
rh

o_
m

in
D

el
ta

 L
 M

in
A

l m
in

A2
 l

ne
g1

M
ul

t G
ap

Z_
ga

p
S

G
ap

p_
l_

co
nd

1.0e-12
1.0e-09
1.0e-06
1.0e-03
1.0e+00

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-13
1.0e-10
1.0e-07

1.0e-04
1.0e-01

1.0e-06

1.0e-04

1.0e-02

1.0e+00

1.0e-09

1.0e-06

1.0e-03

1.0e+00

1.0e-05

1.0e-03

1.0e-01

1−
ρ m

in
(̂ A)

σ m
in (

Δ (̂ A))
σ m

in
(̂ A)

σ n
−1

(̂ A2)
ma

x {1−
λ m

ax
(̂ Z),λ

mi
n (

̂ Z)−1
}

1−
λ n

+1
(Φ

̂ A(
̂ Z))

σ m
in

σ m
ax

(p1 p2
⋯

pn)
mi

n
w

∈T
{(λ 1

−λ
2)

(w
*

̂ A+
w

̂ A*
) }

Why. . . ? (Disk matrices comprise a small set, of codimension 2n).

3/24

Random proximal points (via cvx) are often disk matrices

1− inner radius
ρ(A)

(via chebfun)

algebraic deviation

from disk

distance to

singularity

distance to null

Jordan block

n
2 3 4 5 6 7 8 9 10

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

1-
rh

o_
m

in
D

el
ta

 L
 M

in
A

l m
in

A2
 l

ne
g1

M
ul

t G
ap

Z_
ga

p
S

G
ap

p_
l_

co
nd

1.0e-12
1.0e-09
1.0e-06
1.0e-03
1.0e+00

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-13
1.0e-10
1.0e-07

1.0e-04
1.0e-01

1.0e-06

1.0e-04

1.0e-02

1.0e+00

1.0e-09

1.0e-06

1.0e-03

1.0e+00

1.0e-05

1.0e-03

1.0e-01

1−
ρ m

in
(̂ A)

σ m
in (

Δ (̂ A))
σ m

in
(̂ A)

σ n
−1

(̂ A2)
ma

x {1−
λ m

ax
(̂ Z),λ

mi
n (

̂ Z)−1
}

1−
λ n

+1
(Φ

̂ A(
̂ Z))

σ m
in

σ m
ax

(p1 p2
⋯

pn)
mi

n
w

∈T
{(λ 1

−λ
2)

(w
*

̂ A+
w

̂ A*
) }

Why. . . ? (Disk matrices comprise a small set, of codimension 2n).

3/24

Random proximal points (via cvx) are often disk matrices

1− inner radius
ρ(A)

(via chebfun)

algebraic deviation

from disk

distance to

singularity

distance to null

Jordan block

n
2 3 4 5 6 7 8 9 10

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

1-
rh

o_
m

in
D

el
ta

 L
 M

in
A

l m
in

A2
 l

ne
g1

M
ul

t G
ap

Z_
ga

p
S

G
ap

p_
l_

co
nd

1.0e-12
1.0e-09
1.0e-06
1.0e-03
1.0e+00

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-13
1.0e-10
1.0e-07

1.0e-04
1.0e-01

1.0e-06

1.0e-04

1.0e-02

1.0e+00

1.0e-09

1.0e-06

1.0e-03

1.0e+00

1.0e-05

1.0e-03

1.0e-01

1−
ρ m

in
(̂ A)

σ m
in (

Δ (̂ A))
σ m

in
(̂ A)

σ n
−1

(̂ A2)
ma

x {1−
λ m

ax
(̂ Z),λ

mi
n (

̂ Z)−1
}

1−
λ n

+1
(Φ

̂ A(
̂ Z))

σ m
in

σ m
ax

(p1 p2
⋯

pn)
mi

n
w

∈T
{(λ 1

−λ
2)

(w
*

̂ A+
w

̂ A*
) }

Why. . . ? (Disk matrices comprise a small set, of codimension 2n).

3/24

Random proximal points (via cvx) are often disk matrices

1− inner radius
ρ(A)

(via chebfun)

algebraic deviation

from disk

distance to

singularity

distance to null

Jordan block

n
2 3 4 5 6 7 8 9 10

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

0 1000

Index

1-
rh

o_
m

in
D

el
ta

 L
 M

in
A

l m
in

A2
 l

ne
g1

M
ul

t G
ap

Z_
ga

p
S

G
ap

p_
l_

co
nd

1.0e-12
1.0e-09
1.0e-06
1.0e-03
1.0e+00

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-11
1.0e-08
1.0e-05
1.0e-02

1.0e-13
1.0e-10
1.0e-07

1.0e-04
1.0e-01

1.0e-06

1.0e-04

1.0e-02

1.0e+00

1.0e-09

1.0e-06

1.0e-03

1.0e+00

1.0e-05

1.0e-03

1.0e-01

1−
ρ m

in
(̂ A)

σ m
in (

Δ (̂ A))
σ m

in
(̂ A)

σ n
−1

(̂ A2)
ma

x {1−
λ m

ax
(̂ Z),λ

mi
n (

̂ Z)−1
}

1−
λ n

+1
(Φ

̂ A(
̂ Z))

σ m
in

σ m
ax

(p1 p2
⋯

pn)
mi

n
w

∈T
{(λ 1

−λ
2)

(w
*

̂ A+
w

̂ A*
) }

Why. . . ? (Disk matrices comprise a small set, of codimension 2n).
3/24

Partial smoothness and active sets L ’02

Nonsmooth optimization usually involves structured sets. Random

instances are solved on manifolds of solutions under perturbation.

• {smooth gi (x) ≤ 0} relative to active set {x : gj(x) = 0}
• PSD matrices Sn

+ relative to {X ∈ Sn
+ : rank(X) = k}

• smooth f + || · ||1 relative to fixed sparsity pattern

• numerical radius ρ relative to disk matrices

(L-Overton ’20, Han-L ’20)

History: generalized “active constraints” in nonlinear

programming (Burke-Moré ’88), “identifiable surfaces”

(Wright ’93), “VU decomposition” (Mifflin-Sagastizábal ’00). . .

4/24

Partial smoothness and active sets L ’02

Nonsmooth optimization usually involves structured sets. Random

instances are solved on manifolds of solutions under perturbation.

• {smooth gi (x) ≤ 0} relative to active set {x : gj(x) = 0}

• PSD matrices Sn
+ relative to {X ∈ Sn

+ : rank(X) = k}
• smooth f + || · ||1 relative to fixed sparsity pattern

• numerical radius ρ relative to disk matrices

(L-Overton ’20, Han-L ’20)

History: generalized “active constraints” in nonlinear

programming (Burke-Moré ’88), “identifiable surfaces”

(Wright ’93), “VU decomposition” (Mifflin-Sagastizábal ’00). . .

4/24

Partial smoothness and active sets L ’02

Nonsmooth optimization usually involves structured sets. Random

instances are solved on manifolds of solutions under perturbation.

• {smooth gi (x) ≤ 0} relative to active set {x : gj(x) = 0}
• PSD matrices Sn

+ relative to {X ∈ Sn
+ : rank(X) = k}

• smooth f + || · ||1 relative to fixed sparsity pattern

• numerical radius ρ relative to disk matrices

(L-Overton ’20, Han-L ’20)

History: generalized “active constraints” in nonlinear

programming (Burke-Moré ’88), “identifiable surfaces”

(Wright ’93), “VU decomposition” (Mifflin-Sagastizábal ’00). . .

4/24

Partial smoothness and active sets L ’02

Nonsmooth optimization usually involves structured sets. Random

instances are solved on manifolds of solutions under perturbation.

• {smooth gi (x) ≤ 0} relative to active set {x : gj(x) = 0}
• PSD matrices Sn

+ relative to {X ∈ Sn
+ : rank(X) = k}

• smooth f + || · ||1 relative to fixed sparsity pattern

• numerical radius ρ relative to disk matrices

(L-Overton ’20, Han-L ’20)

History: generalized “active constraints” in nonlinear

programming (Burke-Moré ’88), “identifiable surfaces”

(Wright ’93), “VU decomposition” (Mifflin-Sagastizábal ’00). . .

4/24

Partial smoothness and active sets L ’02

Nonsmooth optimization usually involves structured sets. Random

instances are solved on manifolds of solutions under perturbation.

• {smooth gi (x) ≤ 0} relative to active set {x : gj(x) = 0}
• PSD matrices Sn

+ relative to {X ∈ Sn
+ : rank(X) = k}

• smooth f + || · ||1 relative to fixed sparsity pattern

• numerical radius ρ relative to disk matrices

(L-Overton ’20, Han-L ’20)

History: generalized “active constraints” in nonlinear

programming (Burke-Moré ’88), “identifiable surfaces”

(Wright ’93), “VU decomposition” (Mifflin-Sagastizábal ’00). . .

4/24

Partial smoothness and active sets L ’02

Nonsmooth optimization usually involves structured sets. Random

instances are solved on manifolds of solutions under perturbation.

• {smooth gi (x) ≤ 0} relative to active set {x : gj(x) = 0}
• PSD matrices Sn

+ relative to {X ∈ Sn
+ : rank(X) = k}

• smooth f + || · ||1 relative to fixed sparsity pattern

• numerical radius ρ relative to disk matrices

(L-Overton ’20, Han-L ’20)

History: generalized “active constraints” in nonlinear

programming (Burke-Moré ’88), “identifiable surfaces”

(Wright ’93), “VU decomposition” (Mifflin-Sagastizábal ’00). . .

4/24

Partial smoothness and algorithms

Diverse first-order methods identify the

manifold (L-Hare ’04. . .), which drives

the local convergence.

Example: l1 regularization for sparsity.

Proximal gradient iterates settle on a

sparsity pattern (Hale-Yin-Zhang ’08).

min
x

f (x) = h(x) + λ‖x‖∗

Example: Nuclear norm regularization for low-rank optimization.

Proximal gradient (singular value thresholding) iterates settle on a

fixed-rank manifold, then converge linearly to the solution.

(Liang-Fadili-Peyré ’18)

5/24

Partial smoothness and algorithms

Diverse first-order methods identify the

manifold (L-Hare ’04. . .), which drives

the local convergence.

Example: l1 regularization for sparsity.

Proximal gradient iterates settle on a

sparsity pattern (Hale-Yin-Zhang ’08).

min
x

f (x) = h(x) + λ‖x‖∗

Example: Nuclear norm regularization for low-rank optimization.

Proximal gradient (singular value thresholding) iterates settle on a

fixed-rank manifold, then converge linearly to the solution.

(Liang-Fadili-Peyré ’18)

5/24

Partial smoothness and algorithms

Diverse first-order methods identify the

manifold (L-Hare ’04. . .), which drives

the local convergence.

Example: l1 regularization for sparsity.

Proximal gradient iterates settle on a

sparsity pattern (Hale-Yin-Zhang ’08).

min
x

f (x) = h(x) + λ‖x‖∗

Example: Nuclear norm regularization for low-rank optimization.

Proximal gradient (singular value thresholding) iterates settle on a

fixed-rank manifold, then converge linearly to the solution.

(Liang-Fadili-Peyré ’18)

5/24

Partial smoothness and algorithms

Diverse first-order methods identify the

manifold (L-Hare ’04. . .), which drives

the local convergence.

Example: l1 regularization for sparsity.

Proximal gradient iterates settle on a

sparsity pattern (Hale-Yin-Zhang ’08).

min
x

f (x) = h(x) + λ‖x‖∗

Example: Nuclear norm regularization for low-rank optimization.

Proximal gradient (singular value thresholding) iterates settle on a

fixed-rank manifold, then converge linearly to the solution.

(Liang-Fadili-Peyré ’18)

5/24

Partial smoothness and algorithms

Diverse first-order methods identify the

manifold (L-Hare ’04. . .), which drives

the local convergence.

Example: l1 regularization for sparsity.

Proximal gradient iterates settle on a

sparsity pattern (Hale-Yin-Zhang ’08).

min
x

f (x) = h(x) + λ‖x‖∗

Example: Nuclear norm regularization for low-rank optimization.

Proximal gradient (singular value thresholding) iterates settle on a

fixed-rank manifold, then converge linearly to the solution.

(Liang-Fadili-Peyré ’18)

5/24

Generalized equations

Shift focus from optimization to optimality conditions:

x minimizes f ⇒ 0 ∈ ∂f (x).

Generalize: 0 ∈ Φ(u) for set-valued operator Φ on Rn.

• Variational inequalities

Find x ∈ Q so F (x)T (z − x) ≥ 0 for all z ∈ Q: equivalently,

0 ∈ F (x) + NQ(x).

• Composite optimization

minx h
(
c(x)

)
for convex h on Rm and smooth c into Rm.

Stationarity:

0 ∈

(
∇c(x)T y

−y

)
+

(
0

∂h(c(x))

)

6/24

Generalized equations

Shift focus from optimization to optimality conditions:

x minimizes f ⇒ 0 ∈ ∂f (x).

Generalize: 0 ∈ Φ(u) for set-valued operator Φ on Rn.

• Variational inequalities

Find x ∈ Q so F (x)T (z − x) ≥ 0 for all z ∈ Q: equivalently,

0 ∈ F (x) + NQ(x).

• Composite optimization

minx h
(
c(x)

)
for convex h on Rm and smooth c into Rm.

Stationarity:

0 ∈

(
∇c(x)T y

−y

)
+

(
0

∂h(c(x))

)

6/24

Generalized equations

Shift focus from optimization to optimality conditions:

x minimizes f ⇒ 0 ∈ ∂f (x).

Generalize: 0 ∈ Φ(u) for set-valued operator Φ on Rn.

• Variational inequalities

Find x ∈ Q so F (x)T (z − x) ≥ 0 for all z ∈ Q: equivalently,

0 ∈ F (x) + NQ(x).

• Composite optimization

minx h
(
c(x)

)
for convex h on Rm and smooth c into Rm.

Stationarity:

0 ∈

(
∇c(x)T y

−y

)
+

(
0

∂h(c(x))

)

6/24

Generalized equations

Shift focus from optimization to optimality conditions:

x minimizes f ⇒ 0 ∈ ∂f (x).

Generalize: 0 ∈ Φ(u) for set-valued operator Φ on Rn.

• Variational inequalities

Find x ∈ Q so F (x)T (z − x) ≥ 0 for all z ∈ Q: equivalently,

0 ∈ F (x) + NQ(x).

• Composite optimization

minx h
(
c(x)

)
for convex h on Rm and smooth c into Rm.

Stationarity:

0 ∈

(
∇c(x)T y

−y

)
+

(
0

∂h(c(x))

)

6/24

Generalized equations

Shift focus from optimization to optimality conditions:

x minimizes f ⇒ 0 ∈ ∂f (x).

Generalize: 0 ∈ Φ(u) for set-valued operator Φ on Rn.

• Variational inequalities

Find x ∈ Q so F (x)T (z − x) ≥ 0 for all z ∈ Q: equivalently,

0 ∈ F (x) + NQ(x).

• Composite optimization

minx h
(
c(x)

)
for convex h on Rm and smooth c into Rm.

Stationarity:

0 ∈

(
∇c(x)T y

−y

)
+

(
0

∂h(c(x))

)
6/24

Partly smooth generalized equations (L-Liang ’18)

A set-valued operator Φ is partly smooth

at a solution ū for given data v̄

if

• gph Φ = {(u, v) : v ∈ Φ(u)}
is a manifold around (ū, v̄).

• proj : gph Φ→ Rn : (u, v) 7→ u

is constant rank around (ū, v̄). . .

(i.e. the projection of the graph’s tangent

space has locally constant dimension).

Asymptotic solvers then identify the active manifold

M = proj
(
gph Φ around (ū, v̄)

)
,

since vk ∈ Φ(uk) with (uk , vk)→ (ū, v̄) implies uk ∈M eventually.

7/24

Partly smooth generalized equations (L-Liang ’18)

A set-valued operator Φ is partly smooth

at a solution ū for given data v̄ if

• gph Φ = {(u, v) : v ∈ Φ(u)}
is a manifold around (ū, v̄).

• proj : gph Φ→ Rn : (u, v) 7→ u

is constant rank around (ū, v̄). . .

(i.e. the projection of the graph’s tangent

space has locally constant dimension).

Asymptotic solvers then identify the active manifold

M = proj
(
gph Φ around (ū, v̄)

)
,

since vk ∈ Φ(uk) with (uk , vk)→ (ū, v̄) implies uk ∈M eventually.

7/24

Partly smooth generalized equations (L-Liang ’18)

A set-valued operator Φ is partly smooth

at a solution ū for given data v̄ if

• gph Φ = {(u, v) : v ∈ Φ(u)}
is a manifold around (ū, v̄).

• proj : gph Φ→ Rn : (u, v) 7→ u

is constant rank around (ū, v̄). . .

(i.e. the projection of the graph’s tangent

space has locally constant dimension).

Asymptotic solvers then identify the active manifold

M = proj
(
gph Φ around (ū, v̄)

)
,

since vk ∈ Φ(uk) with (uk , vk)→ (ū, v̄) implies uk ∈M eventually.

7/24

Basic example: partly smooth sets

For closed convex (or “prox-regular”) S ⊂ Rn, suppose x̄ solves

min
x∈S
〈ȳ , x〉 and hence ȳ ∈ NS(x).

If S contains a ridge manifold M
(the normal cone NS(x) depends on

x ∈M continuously and spans NM(x)),

and nondegeneracy holds
(
ȳ ∈ ri

(
NS(x̄)

))
,

then the operator NS is partly smooth

at x̄ for ȳ , with active manifold M.

So if S is convex and x̄ is unique, projected gradient iterations

x ← projQ(x − αȳ) converge to x̄ (if α small) and identify M.

8/24

Basic example: partly smooth sets

For closed convex (or “prox-regular”) S ⊂ Rn, suppose x̄ solves

min
x∈S
〈ȳ , x〉 and hence ȳ ∈ NS(x).

If S contains a ridge manifold M
(the normal cone NS(x) depends on

x ∈M continuously and spans NM(x)),

and nondegeneracy holds
(
ȳ ∈ ri

(
NS(x̄)

))
,

then the operator NS is partly smooth

at x̄ for ȳ , with active manifold M.

So if S is convex and x̄ is unique, projected gradient iterations

x ← projQ(x − αȳ) converge to x̄ (if α small) and identify M.

8/24

Basic example: partly smooth sets

For closed convex (or “prox-regular”) S ⊂ Rn, suppose x̄ solves

min
x∈S
〈ȳ , x〉 and hence ȳ ∈ NS(x).

If S contains a ridge manifold M
(the normal cone NS(x) depends on

x ∈M continuously and spans NM(x)),

and nondegeneracy holds
(
ȳ ∈ ri

(
NS(x̄)

))
,

then the operator NS is partly smooth

at x̄ for ȳ , with active manifold M.

So if S is convex and x̄ is unique, projected gradient iterations

x ← projQ(x − αȳ) converge to x̄ (if α small) and identify M.

8/24

Example: max functions of degree k

Given a decomposition

f (x) = max
i=1,...,k

fi (x),

using smooth components fi , call x̄ a strictly active critical point

when the values fi (x̄) are all equal, and the system∑
i

λi = 1,
∑
i

λi∇fi (x̄) = 0

has a unique solution, which furthermore has each λi > 0. Then

x 7→ ∂f (x) = conv{∇fi (x) : fi (x) = f (x)}

is partly smooth at x̄ for 0 relative to the active manifold M
of points where each fi has equal value.

9/24

Example: max functions of degree k

Given a decomposition

f (x) = max
i=1,...,k

fi (x),

using smooth components fi ,

call x̄ a strictly active critical point

when the values fi (x̄) are all equal, and the system∑
i

λi = 1,
∑
i

λi∇fi (x̄) = 0

has a unique solution, which furthermore has each λi > 0. Then

x 7→ ∂f (x) = conv{∇fi (x) : fi (x) = f (x)}

is partly smooth at x̄ for 0 relative to the active manifold M
of points where each fi has equal value.

9/24

Example: max functions of degree k

Given a decomposition

f (x) = max
i=1,...,k

fi (x),

using smooth components fi , call x̄ a strictly active critical point

when the values fi (x̄) are all equal, and the system∑
i

λi = 1,
∑
i

λi∇fi (x̄) = 0

has a unique solution, which furthermore has each λi > 0.

Then

x 7→ ∂f (x) = conv{∇fi (x) : fi (x) = f (x)}

is partly smooth at x̄ for 0 relative to the active manifold M
of points where each fi has equal value.

9/24

Example: max functions of degree k

Given a decomposition

f (x) = max
i=1,...,k

fi (x),

using smooth components fi , call x̄ a strictly active critical point

when the values fi (x̄) are all equal, and the system∑
i

λi = 1,
∑
i

λi∇fi (x̄) = 0

has a unique solution, which furthermore has each λi > 0. Then

x 7→ ∂f (x) = conv{∇fi (x) : fi (x) = f (x)}

is partly smooth at x̄ for 0 relative to the active manifold M
of points where each fi has equal value.

9/24

Sard-type behavior: partial smoothness is common

Sard’s Theorem: almost no values of smooth operators are critical.

What about set-valued operators and generalized equations on Rn?

Consider a semi-algebraic operator Φ with n-dimensional graph:

gph Φ =

q⋃
i=1

r⋂
j=1

{
(x , y) ∈ R2n : pij(x , y)

{ ≤
or

<

}
0
}

for polynomials pij . Eg: Subdifferentials, monotone operators. . .

Theorem Around generic data y , there are smooth maps Gi so

Φ−1 = {G1, . . . ,Gk} (possibly empty).

Φ is partly smooth for y at each solution xi = Gi (y), and

gph Φ intersects (Rn × {y}) transversally at (xi , y).

(Ioffe ’07, Bolte. . . ’11, Drusvyatskiy. . . ’16, Lee. . . ’19, L-Tian)

10/24

Sard-type behavior: partial smoothness is common

Sard’s Theorem: almost no values of smooth operators are critical.

What about set-valued operators and generalized equations on Rn?

Consider a semi-algebraic operator Φ with n-dimensional graph:

gph Φ =

q⋃
i=1

r⋂
j=1

{
(x , y) ∈ R2n : pij(x , y)

{ ≤
or

<

}
0
}

for polynomials pij . Eg: Subdifferentials, monotone operators. . .

Theorem Around generic data y , there are smooth maps Gi so

Φ−1 = {G1, . . . ,Gk} (possibly empty).

Φ is partly smooth for y at each solution xi = Gi (y), and

gph Φ intersects (Rn × {y}) transversally at (xi , y).

(Ioffe ’07, Bolte. . . ’11, Drusvyatskiy. . . ’16, Lee. . . ’19, L-Tian)

10/24

Sard-type behavior: partial smoothness is common

Sard’s Theorem: almost no values of smooth operators are critical.

What about set-valued operators and generalized equations on Rn?

Consider a semi-algebraic operator Φ with n-dimensional graph:

gph Φ =

q⋃
i=1

r⋂
j=1

{
(x , y) ∈ R2n : pij(x , y)

{ ≤
or

<

}
0
}

for polynomials pij . Eg: Subdifferentials, monotone operators. . .

Theorem Around generic data y , there are smooth maps Gi so

Φ−1 = {G1, . . . ,Gk} (possibly empty).

Φ is partly smooth for y at each solution xi = Gi (y), and

gph Φ intersects (Rn × {y}) transversally at (xi , y).

(Ioffe ’07, Bolte. . . ’11, Drusvyatskiy. . . ’16, Lee. . . ’19, L-Tian)

10/24

Sard-type behavior: partial smoothness is common

Sard’s Theorem: almost no values of smooth operators are critical.

What about set-valued operators and generalized equations on Rn?

Consider a semi-algebraic operator Φ with n-dimensional graph:

gph Φ =

q⋃
i=1

r⋂
j=1

{
(x , y) ∈ R2n : pij(x , y)

{ ≤
or

<

}
0
}

for polynomials pij .

Eg: Subdifferentials, monotone operators. . .

Theorem Around generic data y , there are smooth maps Gi so

Φ−1 = {G1, . . . ,Gk} (possibly empty).

Φ is partly smooth for y at each solution xi = Gi (y), and

gph Φ intersects (Rn × {y}) transversally at (xi , y).

(Ioffe ’07, Bolte. . . ’11, Drusvyatskiy. . . ’16, Lee. . . ’19, L-Tian)

10/24

Sard-type behavior: partial smoothness is common

Sard’s Theorem: almost no values of smooth operators are critical.

What about set-valued operators and generalized equations on Rn?

Consider a semi-algebraic operator Φ with n-dimensional graph:

gph Φ =

q⋃
i=1

r⋂
j=1

{
(x , y) ∈ R2n : pij(x , y)

{ ≤
or

<

}
0
}

for polynomials pij . Eg: Subdifferentials, monotone operators. . .

Theorem Around generic data y , there are smooth maps Gi so

Φ−1 = {G1, . . . ,Gk} (possibly empty).

Φ is partly smooth for y at each solution xi = Gi (y), and

gph Φ intersects (Rn × {y}) transversally at (xi , y).

(Ioffe ’07, Bolte. . . ’11, Drusvyatskiy. . . ’16, Lee. . . ’19, L-Tian)

10/24

Sard-type behavior: partial smoothness is common

Sard’s Theorem: almost no values of smooth operators are critical.

What about set-valued operators and generalized equations on Rn?

Consider a semi-algebraic operator Φ with n-dimensional graph:

gph Φ =

q⋃
i=1

r⋂
j=1

{
(x , y) ∈ R2n : pij(x , y)

{ ≤
or

<

}
0
}

for polynomials pij . Eg: Subdifferentials, monotone operators. . .

Theorem Around generic data y , there are smooth maps Gi so

Φ−1 = {G1, . . . ,Gk} (possibly empty).

Φ is partly smooth for y at each solution xi = Gi (y), and

gph Φ intersects (Rn × {y}) transversally at (xi , y).

(Ioffe ’07, Bolte. . . ’11, Drusvyatskiy. . . ’16, Lee. . . ’19, L-Tian)

10/24

Sard-type behavior: partial smoothness is common

Sard’s Theorem: almost no values of smooth operators are critical.

What about set-valued operators and generalized equations on Rn?

Consider a semi-algebraic operator Φ with n-dimensional graph:

gph Φ =

q⋃
i=1

r⋂
j=1

{
(x , y) ∈ R2n : pij(x , y)

{ ≤
or

<

}
0
}

for polynomials pij . Eg: Subdifferentials, monotone operators. . .

Theorem Around generic data y , there are smooth maps Gi so

Φ−1 = {G1, . . . ,Gk} (possibly empty).

Φ is partly smooth for y at each solution xi = Gi (y),

and

gph Φ intersects (Rn × {y}) transversally at (xi , y).

(Ioffe ’07, Bolte. . . ’11, Drusvyatskiy. . . ’16, Lee. . . ’19, L-Tian)

10/24

Sard-type behavior: partial smoothness is common

Sard’s Theorem: almost no values of smooth operators are critical.

What about set-valued operators and generalized equations on Rn?

Consider a semi-algebraic operator Φ with n-dimensional graph:

gph Φ =

q⋃
i=1

r⋂
j=1

{
(x , y) ∈ R2n : pij(x , y)

{ ≤
or

<

}
0
}

for polynomials pij . Eg: Subdifferentials, monotone operators. . .

Theorem Around generic data y , there are smooth maps Gi so

Φ−1 = {G1, . . . ,Gk} (possibly empty).

Φ is partly smooth for y at each solution xi = Gi (y), and

gph Φ intersects (Rn × {y}) transversally at (xi , y).

(Ioffe ’07, Bolte. . . ’11, Drusvyatskiy. . . ’16, Lee. . . ’19, L-Tian)
10/24

Semi-Newton iterations for 0 ∈ Φ(u) (L-Wylie ’20)

Recast as set intersection: find a point z = (u, 0) where

X = gph Φ intersects Y = Rn × {0}.

Assume transversality: NX (z) ∩ NY (z) = {0}.

Step 1: Linearize X ;

intersect with Y .

Step 2: Restore to X via a

Lipschitz map fixing z .

Linearize around v ∈ Φ(u); solve for u′ u+ = ProjM(u′); v+ = ProjΦ(u+)(0)

11/24

Semi-Newton iterations for 0 ∈ Φ(u) (L-Wylie ’20)

Recast as set intersection: find a point z = (u, 0) where

X = gph Φ intersects Y = Rn × {0}.

Assume transversality: NX (z) ∩ NY (z) = {0}.

Step 1: Linearize X ;

intersect with Y .

Step 2: Restore to X via a

Lipschitz map fixing z .

Linearize around v ∈ Φ(u); solve for u′ u+ = ProjM(u′); v+ = ProjΦ(u+)(0)

11/24

Semi-Newton iterations for 0 ∈ Φ(u) (L-Wylie ’20)

Recast as set intersection: find a point z = (u, 0) where

X = gph Φ intersects Y = Rn × {0}.

Assume transversality: NX (z) ∩ NY (z) = {0}.

Step 1: Linearize X ;

intersect with Y .

Step 2: Restore to X via a

Lipschitz map fixing z .

Linearize around v ∈ Φ(u); solve for u′ u+ = ProjM(u′); v+ = ProjΦ(u+)(0)

11/24

Semi-Newton iterations for 0 ∈ Φ(u) (L-Wylie ’20)

Recast as set intersection: find a point z = (u, 0) where

X = gph Φ intersects Y = Rn × {0}.

Assume transversality: NX (z) ∩ NY (z) = {0}.

Step 1: Linearize X ;

intersect with Y .

Step 2: Restore to X via a

Lipschitz map fixing z .

Linearize around v ∈ Φ(u); solve for u′ u+ = ProjM(u′); v+ = ProjΦ(u+)(0)

11/24

Semi-Newton iterations for 0 ∈ Φ(u) (L-Wylie ’20)

Recast as set intersection: find a point z = (u, 0) where

X = gph Φ intersects Y = Rn × {0}.

Assume transversality: NX (z) ∩ NY (z) = {0}.

Step 1: Linearize X ;

intersect with Y .

Step 2: Restore to X via a

Lipschitz map fixing z .

Linearize around v ∈ Φ(u); solve for u′ u+ = ProjM(u′); v+ = ProjΦ(u+)(0)

11/24

Semi-Newton iterations for 0 ∈ Φ(u) (L-Wylie ’20)

Recast as set intersection: find a point z = (u, 0) where

X = gph Φ intersects Y = Rn × {0}.

Assume transversality: NX (z) ∩ NY (z) = {0}.

Step 1: Linearize X ;

intersect with Y .

Step 2: Restore to X via a

Lipschitz map fixing z .

Linearize around v ∈ Φ(u); solve for u′

u+ = ProjM(u′); v+ = ProjΦ(u+)(0)

11/24

Semi-Newton iterations for 0 ∈ Φ(u) (L-Wylie ’20)

Recast as set intersection: find a point z = (u, 0) where

X = gph Φ intersects Y = Rn × {0}.

Assume transversality: NX (z) ∩ NY (z) = {0}.

Step 1: Linearize X ;

intersect with Y .

Step 2: Restore to X via a

Lipschitz map fixing z .

Linearize around v ∈ Φ(u); solve for u′ u+ = ProjM(u′); v+ = ProjΦ(u+)(0)

11/24

Fast black box nonsmooth optimization

Newtonian methods for partly smooth optimization 0 ∈ ∂f (x)

are interesting, but typically need structural knowledge of ∂f .

Classical special case: sequential quadratic programming.

More generally, semismooth Newton methods: Klatte-Kummer ’02,

Facchinei-Pang ’03, Izmailov-Solodov ’14, Gfrerer-Outrata ’19.

With just an oracle for linear approximations to convex f at input

points, bundle methods are appealing (Sagastizábal ’18 ICM).

• “Null” steps enhance a cutting plane model.

• “Serious” steps sufficiently decrease the objective

• Partial smoothness (“VU”) can accelerate the serious steps.

But can we reduce oracle calls using quadratic approximations?

12/24

Fast black box nonsmooth optimization

Newtonian methods for partly smooth optimization 0 ∈ ∂f (x)

are interesting, but typically need structural knowledge of ∂f .

Classical special case: sequential quadratic programming.

More generally, semismooth Newton methods: Klatte-Kummer ’02,

Facchinei-Pang ’03, Izmailov-Solodov ’14, Gfrerer-Outrata ’19.

With just an oracle for linear approximations to convex f at input

points, bundle methods are appealing (Sagastizábal ’18 ICM).

• “Null” steps enhance a cutting plane model.

• “Serious” steps sufficiently decrease the objective

• Partial smoothness (“VU”) can accelerate the serious steps.

But can we reduce oracle calls using quadratic approximations?

12/24

Fast black box nonsmooth optimization

Newtonian methods for partly smooth optimization 0 ∈ ∂f (x)

are interesting, but typically need structural knowledge of ∂f .

Classical special case: sequential quadratic programming.

More generally, semismooth Newton methods: Klatte-Kummer ’02,

Facchinei-Pang ’03, Izmailov-Solodov ’14, Gfrerer-Outrata ’19.

With just an oracle for linear approximations to convex f at input

points, bundle methods are appealing (Sagastizábal ’18 ICM).

• “Null” steps enhance a cutting plane model.

• “Serious” steps sufficiently decrease the objective

• Partial smoothness (“VU”) can accelerate the serious steps.

But can we reduce oracle calls using quadratic approximations?

12/24

Fast black box nonsmooth optimization

Newtonian methods for partly smooth optimization 0 ∈ ∂f (x)

are interesting, but typically need structural knowledge of ∂f .

Classical special case: sequential quadratic programming.

More generally, semismooth Newton methods: Klatte-Kummer ’02,

Facchinei-Pang ’03, Izmailov-Solodov ’14, Gfrerer-Outrata ’19.

With just an oracle for linear approximations to convex f at input

points, bundle methods are appealing (Sagastizábal ’18 ICM).

• “Null” steps enhance a cutting plane model.

• “Serious” steps sufficiently decrease the objective

• Partial smoothness (“VU”) can accelerate the serious steps.

But can we reduce oracle calls using quadratic approximations?

12/24

Fast black box nonsmooth optimization

Newtonian methods for partly smooth optimization 0 ∈ ∂f (x)

are interesting, but typically need structural knowledge of ∂f .

Classical special case: sequential quadratic programming.

More generally, semismooth Newton methods: Klatte-Kummer ’02,

Facchinei-Pang ’03, Izmailov-Solodov ’14, Gfrerer-Outrata ’19.

With just an oracle for linear approximations to convex f at input

points, bundle methods are appealing (Sagastizábal ’18 ICM).

• “Null” steps enhance a cutting plane model.

• “Serious” steps sufficiently decrease the objective

• Partial smoothness (“VU”) can accelerate the serious steps.

But can we reduce oracle calls using quadratic approximations?

12/24

Fast black box nonsmooth optimization

Newtonian methods for partly smooth optimization 0 ∈ ∂f (x)

are interesting, but typically need structural knowledge of ∂f .

Classical special case: sequential quadratic programming.

More generally, semismooth Newton methods: Klatte-Kummer ’02,

Facchinei-Pang ’03, Izmailov-Solodov ’14, Gfrerer-Outrata ’19.

With just an oracle for linear approximations to convex f at input

points, bundle methods are appealing (Sagastizábal ’18 ICM).

• “Null” steps enhance a cutting plane model.

• “Serious” steps sufficiently decrease the objective

• Partial smoothness (“VU”) can accelerate the serious steps.

But can we reduce oracle calls using quadratic approximations?

12/24

Second-order oracles for nonsmooth optimization

Convex f : Rn → R are twice differentiable off a negligible set N.

Black-box methods (bundle, BFGS) typically never encounter N.

What if an oracle returns f (x),∇f (x),∇2f (x) for x 6∈ N?

Aim: find a bundle S of k reference points, with small diameter

max{‖s − s ′‖ : s, s ′ ∈ S}

and small optimality measure

dist
(

0, conv
(
∇f (S)

))
.

Intuition: if the bundle size k is large enough,

lim
S→{x}

conv
(
∇f (S)

)
= ∂f (x).

13/24

Second-order oracles for nonsmooth optimization

Convex f : Rn → R are twice differentiable off a negligible set N.

Black-box methods (bundle, BFGS) typically never encounter N.

What if an oracle returns f (x),∇f (x),∇2f (x) for x 6∈ N?

Aim: find a bundle S of k reference points, with small diameter

max{‖s − s ′‖ : s, s ′ ∈ S}

and small optimality measure

dist
(

0, conv
(
∇f (S)

))
.

Intuition: if the bundle size k is large enough,

lim
S→{x}

conv
(
∇f (S)

)
= ∂f (x).

13/24

Second-order oracles for nonsmooth optimization

Convex f : Rn → R are twice differentiable off a negligible set N.

Black-box methods (bundle, BFGS) typically never encounter N.

What if an oracle returns f (x),∇f (x),∇2f (x) for x 6∈ N?

Aim: find a bundle S of k reference points, with small diameter

max{‖s − s ′‖ : s, s ′ ∈ S}

and small optimality measure

dist
(

0, conv
(
∇f (S)

))
.

Intuition: if the bundle size k is large enough,

lim
S→{x}

conv
(
∇f (S)

)
= ∂f (x).

13/24

Second-order oracles for nonsmooth optimization

Convex f : Rn → R are twice differentiable off a negligible set N.

Black-box methods (bundle, BFGS) typically never encounter N.

What if an oracle returns f (x),∇f (x),∇2f (x) for x 6∈ N?

Aim: find a bundle S of k reference points, with small diameter

max{‖s − s ′‖ : s, s ′ ∈ S}

and small optimality measure

dist
(

0, conv
(
∇f (S)

))
.

Intuition: if the bundle size k is large enough,

lim
S→{x}

conv
(
∇f (S)

)
= ∂f (x).

13/24

Second-order oracles for nonsmooth optimization

Convex f : Rn → R are twice differentiable off a negligible set N.

Black-box methods (bundle, BFGS) typically never encounter N.

What if an oracle returns f (x),∇f (x),∇2f (x) for x 6∈ N?

Aim: find a bundle S of k reference points, with small diameter

max{‖s − s ′‖ : s, s ′ ∈ S}

and small optimality measure

dist
(

0, conv
(
∇f (S)

))
.

Intuition: if the bundle size k is large enough,

lim
S→{x}

conv
(
∇f (S)

)
= ∂f (x).

13/24

Second-order oracles for nonsmooth optimization

Convex f : Rn → R are twice differentiable off a negligible set N.

Black-box methods (bundle, BFGS) typically never encounter N.

What if an oracle returns f (x),∇f (x),∇2f (x) for x 6∈ N?

Aim: find a bundle S of k reference points, with small diameter

max{‖s − s ′‖ : s, s ′ ∈ S}

and small optimality measure

dist
(

0, conv
(
∇f (S)

))
.

Intuition: if the bundle size k is large enough,

lim
S→{x}

conv
(
∇f (S)

)
= ∂f (x).

13/24

A k-bundle Newton method (L-Wylie ’19)

For each of the k current reference points s ∈ S , use the oracle

to form the linear and quadratic approximations

ls(x) = f (s) +∇f (s)T (x − s)

qs(x) = ls(x) +
1

2
(x − s)T∇2f (s)(x − s).

• Choose bundle weights λs solving

min
{∥∥∥∑

s∈S
λs∇f (s)

∥∥∥ : λ ≥ 0,
∑
s

λs = 1
}
.

• Choose a new reference point x solving

min
{∑

s

λsqs(x) : ls(s) equal for all s ∈ S
}
.

• Replace s ∈ S minimizing ‖∇f (s)−∇f (x)‖ with x .

14/24

A k-bundle Newton method (L-Wylie ’19)

For each of the k current reference points s ∈ S , use the oracle

to form the linear and quadratic approximations

ls(x) = f (s) +∇f (s)T (x − s)

qs(x) = ls(x) +
1

2
(x − s)T∇2f (s)(x − s).

• Choose bundle weights λs solving

min
{∥∥∥∑

s∈S
λs∇f (s)

∥∥∥ : λ ≥ 0,
∑
s

λs = 1
}
.

• Choose a new reference point x solving

min
{∑

s

λsqs(x) : ls(s) equal for all s ∈ S
}
.

• Replace s ∈ S minimizing ‖∇f (s)−∇f (x)‖ with x .

14/24

A k-bundle Newton method (L-Wylie ’19)

For each of the k current reference points s ∈ S , use the oracle

to form the linear and quadratic approximations

ls(x) = f (s) +∇f (s)T (x − s)

qs(x) = ls(x) +
1

2
(x − s)T∇2f (s)(x − s).

• Choose bundle weights λs solving

min
{∥∥∥∑

s∈S
λs∇f (s)

∥∥∥ : λ ≥ 0,
∑
s

λs = 1
}
.

• Choose a new reference point x solving

min
{∑

s

λsqs(x) : ls(s) equal for all s ∈ S
}
.

• Replace s ∈ S minimizing ‖∇f (s)−∇f (x)‖ with x .

14/24

A k-bundle Newton method (L-Wylie ’19)

For each of the k current reference points s ∈ S , use the oracle

to form the linear and quadratic approximations

ls(x) = f (s) +∇f (s)T (x − s)

qs(x) = ls(x) +
1

2
(x − s)T∇2f (s)(x − s).

• Choose bundle weights λs solving

min
{∥∥∥∑

s∈S
λs∇f (s)

∥∥∥ : λ ≥ 0,
∑
s

λs = 1
}
.

• Choose a new reference point x solving

min
{∑

s

λsqs(x) : ls(s) equal for all s ∈ S
}
.

• Replace s ∈ S minimizing ‖∇f (s)−∇f (x)‖ with x .

14/24

A k-bundle Newton method (L-Wylie ’19)

For each of the k current reference points s ∈ S , use the oracle

to form the linear and quadratic approximations

ls(x) = f (s) +∇f (s)T (x − s)

qs(x) = ls(x) +
1

2
(x − s)T∇2f (s)(x − s).

• Choose bundle weights λs solving

min
{∥∥∥∑

s∈S
λs∇f (s)

∥∥∥ : λ ≥ 0,
∑
s

λs = 1
}
.

• Choose a new reference point x solving

min
{∑

s

λsqs(x) : ls(s) equal for all s ∈ S
}
.

• Replace s ∈ S minimizing ‖∇f (s)−∇f (x)‖ with x .

14/24

Motivating the bundle Newton method

Given a current bundle of reference points s ∈ S , model

f (x) ≈ max
s∈S

fs(x) :

unknown smooth component fs matches f to 2nd order around s.

Optimize model via sequential quadratic programming steps on{
minimize t

subject to fs(x) ≤ t (s ∈ S).

• Estimate multipliers via least squares.

• Minimize the quadratic approximation of the Lagrangian. . .

• . . . subject to the linearized constraints (assumed all active).

New point x improves model’s most closely matching component.

15/24

Motivating the bundle Newton method

Given a current bundle of reference points s ∈ S , model

f (x) ≈ max
s∈S

fs(x) :

unknown smooth component fs matches f to 2nd order around s.

Optimize model via sequential quadratic programming steps on{
minimize t

subject to fs(x) ≤ t (s ∈ S).

• Estimate multipliers via least squares.

• Minimize the quadratic approximation of the Lagrangian. . .

• . . . subject to the linearized constraints (assumed all active).

New point x improves model’s most closely matching component.

15/24

Motivating the bundle Newton method

Given a current bundle of reference points s ∈ S , model

f (x) ≈ max
s∈S

fs(x) :

unknown smooth component fs matches f to 2nd order around s.

Optimize model via sequential quadratic programming steps on{
minimize t

subject to fs(x) ≤ t (s ∈ S).

• Estimate multipliers via least squares.

• Minimize the quadratic approximation of the Lagrangian. . .

• . . . subject to the linearized constraints (assumed all active).

New point x improves model’s most closely matching component.

15/24

Motivating the bundle Newton method

Given a current bundle of reference points s ∈ S , model

f (x) ≈ max
s∈S

fs(x) :

unknown smooth component fs matches f to 2nd order around s.

Optimize model via sequential quadratic programming steps on{
minimize t

subject to fs(x) ≤ t (s ∈ S).

• Estimate multipliers via least squares.

• Minimize the quadratic approximation of the Lagrangian. . .

• . . . subject to the linearized constraints (assumed all active).

New point x improves model’s most closely matching component.

15/24

Motivating the bundle Newton method

Given a current bundle of reference points s ∈ S , model

f (x) ≈ max
s∈S

fs(x) :

unknown smooth component fs matches f to 2nd order around s.

Optimize model via sequential quadratic programming steps on{
minimize t

subject to fs(x) ≤ t (s ∈ S).

• Estimate multipliers via least squares.

• Minimize the quadratic approximation of the Lagrangian. . .

• . . . subject to the linearized constraints (assumed all active).

New point x improves model’s most closely matching component.

15/24

Motivating the bundle Newton method

Given a current bundle of reference points s ∈ S , model

f (x) ≈ max
s∈S

fs(x) :

unknown smooth component fs matches f to 2nd order around s.

Optimize model via sequential quadratic programming steps on{
minimize t

subject to fs(x) ≤ t (s ∈ S).

• Estimate multipliers via least squares.

• Minimize the quadratic approximation of the Lagrangian. . .

• . . . subject to the linearized constraints (assumed all active).

New point x improves model’s most closely matching component.

15/24

Fast convergence on max functions

Theorem If f decomposes as max function of degree k ,

f (x) = max
i=1,...,k

fi (x),

where each component fi is smooth

and strongly convex

around a strictly active critical point x̄ , and

initial S = {s1, . . . , sk} is a full bundle near x̄ , meaning

fi (si) > fj(si) whenever i 6= j ,

then k-bundle Newton converges k-step quadratically to x̄ .

Note: The required bundle size k and the partly smooth

geometry of the active manifold M are related:

k + dimM = n + 1.

The classical Newton method has k = 1.

16/24

Fast convergence on max functions

Theorem If f decomposes as max function of degree k ,

f (x) = max
i=1,...,k

fi (x),

where each component fi is smooth and strongly convex

around a strictly active critical point x̄ , and

initial S = {s1, . . . , sk} is a full bundle near x̄ , meaning

fi (si) > fj(si) whenever i 6= j ,

then k-bundle Newton converges k-step quadratically to x̄ .

Note: The required bundle size k and the partly smooth

geometry of the active manifold M are related:

k + dimM = n + 1.

The classical Newton method has k = 1.

16/24

Fast convergence on max functions

Theorem If f decomposes as max function of degree k ,

f (x) = max
i=1,...,k

fi (x),

where each component fi is smooth and strongly convex

around a strictly active critical point x̄ ,

and

initial S = {s1, . . . , sk} is a full bundle near x̄ , meaning

fi (si) > fj(si) whenever i 6= j ,

then k-bundle Newton converges k-step quadratically to x̄ .

Note: The required bundle size k and the partly smooth

geometry of the active manifold M are related:

k + dimM = n + 1.

The classical Newton method has k = 1.

16/24

Fast convergence on max functions

Theorem If f decomposes as max function of degree k ,

f (x) = max
i=1,...,k

fi (x),

where each component fi is smooth and strongly convex

around a strictly active critical point x̄ , and

initial S = {s1, . . . , sk} is a full bundle near x̄ , meaning

fi (si) > fj(si) whenever i 6= j ,

then k-bundle Newton converges k-step quadratically to x̄ .

Note: The required bundle size k and the partly smooth

geometry of the active manifold M are related:

k + dimM = n + 1.

The classical Newton method has k = 1.

16/24

Fast convergence on max functions

Theorem If f decomposes as max function of degree k ,

f (x) = max
i=1,...,k

fi (x),

where each component fi is smooth and strongly convex

around a strictly active critical point x̄ , and

initial S = {s1, . . . , sk} is a full bundle near x̄ , meaning

fi (si) > fj(si) whenever i 6= j ,

then k-bundle Newton converges k-step quadratically to x̄ .

Note: The required bundle size k and the partly smooth

geometry of the active manifold M are related:

k + dimM = n + 1.

The classical Newton method has k = 1.

16/24

Fast convergence on max functions

Theorem If f decomposes as max function of degree k ,

f (x) = max
i=1,...,k

fi (x),

where each component fi is smooth and strongly convex

around a strictly active critical point x̄ , and

initial S = {s1, . . . , sk} is a full bundle near x̄ , meaning

fi (si) > fj(si) whenever i 6= j ,

then k-bundle Newton converges k-step quadratically to x̄ .

Note: The required bundle size k and the partly smooth

geometry of the active manifold M are related:

k + dimM = n + 1.

The classical Newton method has k = 1.

16/24

Fast convergence on max functions

Theorem If f decomposes as max function of degree k ,

f (x) = max
i=1,...,k

fi (x),

where each component fi is smooth and strongly convex

around a strictly active critical point x̄ , and

initial S = {s1, . . . , sk} is a full bundle near x̄ , meaning

fi (si) > fj(si) whenever i 6= j ,

then k-bundle Newton converges k-step quadratically to x̄ .

Note: The required bundle size k and the partly smooth

geometry of the active manifold M are related:

k + dimM = n + 1.

The classical Newton method has k = 1.

16/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗

• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦

• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4

• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30

17/24

An eigenvalue optimization example

f (s, t, u, v) = λmax

[
0 s t
s 1+u v
t v 1−u

]

− 1

Not a max function around its

minimizer, zero. But. . .

. . . partly smooth relative to a

2-dimensional manifold.

• Proximal bundle ∗
• BFGS ◦
• 3-bundle Newton

• objective X

• optimality 4
• diameter �

1

10−4

10−8

10−12

value

iterations 0 10 20 30

18/24

An eigenvalue optimization example

f (s, t, u, v) = λmax

[
0 s t
s 1+u v
t v 1−u

]
− 1

Not a max function around its

minimizer, zero.

But. . .

. . . partly smooth relative to a

2-dimensional manifold.

• Proximal bundle ∗
• BFGS ◦
• 3-bundle Newton

• objective X

• optimality 4
• diameter �

1

10−4

10−8

10−12

value

iterations 0 10 20 30

18/24

An eigenvalue optimization example

f (s, t, u, v) = λmax

[
0 s t
s 1+u v
t v 1−u

]
− 1

Not a max function around its

minimizer, zero. But. . .

. . . partly smooth relative to a

2-dimensional manifold.

• Proximal bundle ∗
• BFGS ◦
• 3-bundle Newton

• objective X

• optimality 4
• diameter �

1

10−4

10−8

10−12

value

iterations 0 10 20 30

18/24

An eigenvalue optimization example

f (s, t, u, v) = λmax

[
0 s t
s 1+u v
t v 1−u

]
− 1

Not a max function around its

minimizer, zero. But. . .

. . . partly smooth relative to a

2-dimensional manifold.

• Proximal bundle ∗
• BFGS ◦
• 3-bundle Newton

• objective X

• optimality 4
• diameter �

1

10−4

10−8

10−12

value

iterations 0 10 20 30

18/24

An eigenvalue optimization example

f (s, t, u, v) = λmax

[
0 s t
s 1+u v
t v 1−u

]
− 1

Not a max function around its

minimizer, zero. But. . .

. . . partly smooth relative to a

2-dimensional manifold.

• Proximal bundle ∗
• BFGS ◦
• 3-bundle Newton

• objective X

• optimality 4
• diameter �

1

10−4

10−8

10−12

value

iterations 0 10 20 30 18/24

The proof for max functions

Consider a maximum of smooth strongly convex components,

f (x) = max
i=1,...,k

fi (x),

with a strictly active critical point x̄ . on the active manifold M.

Near x on the active manifold M, full bundles S = {s1, . . . , sk}
(so fi (si) > fj(si) for i 6= j) approximate the subdifferential:

∂f (x) ≈ conv∇f (S),

and the Hessians ∇2f (si) predict curvature on M.

Partly smooth geometry then ensures x̂ − x̄ = O(|x̄ − S |2).

Updating si ← x̂ keeps the bundle full, because x̄ is strictly active.

Each reference point si updates within k steps, by strong convexity.

19/24

The proof for max functions

Consider a maximum of smooth strongly convex components,

f (x) = max
i=1,...,k

fi (x),

with a strictly active critical point x̄ . on the active manifold M.

Near x on the active manifold M, full bundles S = {s1, . . . , sk}
(so fi (si) > fj(si) for i 6= j) approximate the subdifferential:

∂f (x) ≈ conv∇f (S),

and the Hessians ∇2f (si) predict curvature on M.

Partly smooth geometry then ensures x̂ − x̄ = O(|x̄ − S |2).

Updating si ← x̂ keeps the bundle full, because x̄ is strictly active.

Each reference point si updates within k steps, by strong convexity.

19/24

The proof for max functions

Consider a maximum of smooth strongly convex components,

f (x) = max
i=1,...,k

fi (x),

with a strictly active critical point x̄ . on the active manifold M.

Near x on the active manifold M, full bundles S = {s1, . . . , sk}
(so fi (si) > fj(si) for i 6= j) approximate the subdifferential:

∂f (x) ≈ conv∇f (S),

and the Hessians ∇2f (si) predict curvature on M.

Partly smooth geometry then ensures x̂ − x̄ = O(|x̄ − S |2).

Updating si ← x̂ keeps the bundle full, because x̄ is strictly active.

Each reference point si updates within k steps, by strong convexity.

19/24

The proof for max functions

Consider a maximum of smooth strongly convex components,

f (x) = max
i=1,...,k

fi (x),

with a strictly active critical point x̄ . on the active manifold M.

Near x on the active manifold M, full bundles S = {s1, . . . , sk}
(so fi (si) > fj(si) for i 6= j) approximate the subdifferential:

∂f (x) ≈ conv∇f (S),

and the Hessians ∇2f (si) predict curvature on M.

Partly smooth geometry then ensures x̂ − x̄ = O(|x̄ − S |2).

Updating si ← x̂ keeps the bundle full, because x̄ is strictly active.

Each reference point si updates within k steps, by strong convexity.

19/24

The proof for max functions

Consider a maximum of smooth strongly convex components,

f (x) = max
i=1,...,k

fi (x),

with a strictly active critical point x̄ . on the active manifold M.

Near x on the active manifold M, full bundles S = {s1, . . . , sk}
(so fi (si) > fj(si) for i 6= j) approximate the subdifferential:

∂f (x) ≈ conv∇f (S),

and the Hessians ∇2f (si) predict curvature on M.

Partly smooth geometry then ensures x̂ − x̄ = O(|x̄ − S |2).

Updating si ← x̂ keeps the bundle full, because x̄ is strictly active.

Each reference point si updates within k steps, by strong convexity.

19/24

The proof for max functions

Consider a maximum of smooth strongly convex components,

f (x) = max
i=1,...,k

fi (x),

with a strictly active critical point x̄ . on the active manifold M.

Near x on the active manifold M, full bundles S = {s1, . . . , sk}
(so fi (si) > fj(si) for i 6= j) approximate the subdifferential:

∂f (x) ≈ conv∇f (S),

and the Hessians ∇2f (si) predict curvature on M.

Partly smooth geometry then ensures x̂ − x̄ = O(|x̄ − S |2).

Updating si ← x̂ keeps the bundle full, because x̄ is strictly active.

Each reference point si updates within k steps, by strong convexity.

19/24

Finding an initial bundle

Black-box methods for finding a minimizer x̄ for nonsmooth f , like

• bundle methods (Lemaréchal, Wolfe ’70’s)

• BFGS (L-Overton ’13)

• gradient sampling (Burke-L-Overton ’05)

asymptotically generate subdifferential approximations:

∂f (x̄) ≈ conv
(
∇f (Ω)

)
for sets Ω of points near x̄ . So, we could choose

k = dim
(

affine span
(
∇f (Ω)

))
(numerically)

and initial S ⊂ Ω of size k with ∇f (S) affinely independent.

20/24

Finding an initial bundle

Black-box methods for finding a minimizer x̄ for nonsmooth f , like

• bundle methods (Lemaréchal, Wolfe ’70’s)

• BFGS (L-Overton ’13)

• gradient sampling (Burke-L-Overton ’05)

asymptotically generate subdifferential approximations:

∂f (x̄) ≈ conv
(
∇f (Ω)

)
for sets Ω of points near x̄ .

So, we could choose

k = dim
(

affine span
(
∇f (Ω)

))
(numerically)

and initial S ⊂ Ω of size k with ∇f (S) affinely independent.

20/24

Finding an initial bundle

Black-box methods for finding a minimizer x̄ for nonsmooth f , like

• bundle methods (Lemaréchal, Wolfe ’70’s)

• BFGS (L-Overton ’13)

• gradient sampling (Burke-L-Overton ’05)

asymptotically generate subdifferential approximations:

∂f (x̄) ≈ conv
(
∇f (Ω)

)
for sets Ω of points near x̄ . So, we could choose

k = dim
(

affine span
(
∇f (Ω)

))
(numerically)

and initial S ⊂ Ω of size k with ∇f (S) affinely independent.

20/24

Finding an initial bundle

Black-box methods for finding a minimizer x̄ for nonsmooth f , like

• bundle methods (Lemaréchal, Wolfe ’70’s)

• BFGS (L-Overton ’13)

• gradient sampling (Burke-L-Overton ’05)

asymptotically generate subdifferential approximations:

∂f (x̄) ≈ conv
(
∇f (Ω)

)
for sets Ω of points near x̄ . So, we could choose

k = dim
(

affine span
(
∇f (Ω)

))
(numerically)

and initial S ⊂ Ω of size k with ∇f (S) affinely independent.

20/24

Example: eigenvalue optimization

For random 25-by-25 symmetric matrices, minimize λmax for

A(x) = A0 + x1A1 + x2A2 + . . .+ x50A50.

Active manifold, where λmax

(
A(x)

)
has multiplicity 6, has dim 30.

f −min f

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

λ1(A(x))− λ6(A(x))

200 400 600 800
Iteration

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

21/24

Example: eigenvalue optimization

For random 25-by-25 symmetric matrices, minimize λmax for

A(x) = A0 + x1A1 + x2A2 + . . .+ x50A50.

Active manifold, where λmax

(
A(x)

)
has multiplicity 6, has dim 30.

f −min f

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

λ1(A(x))− λ6(A(x))

200 400 600 800
Iteration

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

21/24

Example: eigenvalue optimization

For random 25-by-25 symmetric matrices, minimize λmax for

A(x) = A0 + x1A1 + x2A2 + . . .+ x50A50.

Active manifold, where λmax

(
A(x)

)
has multiplicity 6, has dim 30.

f −min f

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

λ1(A(x))− λ6(A(x))

200 400 600 800
Iteration

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

21/24

Example: eigenvalue optimization

For random 25-by-25 symmetric matrices, minimize λmax for

A(x) = A0 + x1A1 + x2A2 + . . .+ x50A50.

Active manifold, where λmax

(
A(x)

)
has multiplicity 6, has dim 30.

f −min f

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

λ1(A(x))− λ6(A(x))

200 400 600 800
Iteration

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

21/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation

X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue

X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions

X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions

??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm

??

22/24

Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??

22/24

Take-away. . .

Partial smoothness is a simple differential-geometric idea that

captures the generic interplay between smooth and nonsmooth

geometry in concrete variational problems, illuminating the analysis

and design of algorithms.

23/24

References

L and M.L. Overton, “Partial smoothness of the numerical radius

at matrices whose fields of values are disks”, SIMAX 2020.

X.Y. Han and L, “Disk matrices and the proximal mapping for the

numerical radius”, arXiv:2004.14542

L and J. Liang, “Partial smoothness and constant rank”,

arXiv:1807.03134.

L and C.J.S. Wylie, “Active-set Newton methods and partial

smoothness”, MOR 2020.

L and C.J.S. Wylie, “A simple Newton method for local

nonsmooth optimization”, arxiv:1907.11742.

24/24

