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Introduction: three questions

Question 1: Why is smoothness

often inherent in nonsmooth

optimization and equations?

Question 2: Can Newton

methods use this smoothness?

Example: minQ f becomes

−∇f (x) ∈ NQ(x).

Projected gradient methods

x ← ProjQ
(
x − γ∇f (x)

)
identify smoothness in Q.

Newtonian acceleration?

Question 3: Superlinear

convergence for black box

nonsmooth optimization?

Example: Eigenvalue

optimization.

500 1000 1500
Black box evaluations

101
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Bundle Newton

Bundle Method

BFGS
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Inherent structure: an example

The numerical radius of an n-by-n complex matrix A,

ρ(A) = max
‖u‖=1

|u∗Au|,

satisfies the “power inequality” (Berger ’65): for k = 1, 2, . . .

1

2
‖Ak‖2 ≤ ρ(Ak) ≤

(
ρ(A)

)k
,

and so controls transient stability in dynamics x ← Ax .

Optimizing ρ often results in unusual matrices. . .

Example: For random matrices Y , proximal matrices A minimizing

ρ(A) + λ‖A− Y ‖2

often have disc fields of values {u∗Au : ‖u‖ = 1}.
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Random proximal points (via cvx) are often disk matrices

1− inner radius
ρ(A)

(via chebfun)

algebraic deviation

from disk

distance to

singularity

distance to null

Jordan block

n
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Why. . . ? (Disk matrices comprise a small set, of codimension 2n).
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Partial smoothness and active sets L ’02

Nonsmooth optimization usually involves structured sets. Random

instances are solved on manifolds of solutions under perturbation.

• {smooth gi (x) ≤ 0} relative to active set {x : gj(x) = 0}
• PSD matrices Sn

+ relative to {X ∈ Sn
+ : rank(X ) = k}

• smooth f + || · ||1 relative to fixed sparsity pattern

• numerical radius ρ relative to disk matrices

(L-Overton ’20, Han-L ’20)

History: generalized “active constraints” in nonlinear

programming (Burke-Moré ’88), “identifiable surfaces”

(Wright ’93), “VU decomposition” (Mifflin-Sagastizábal ’00). . .
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4/24



Partial smoothness and active sets L ’02

Nonsmooth optimization usually involves structured sets. Random

instances are solved on manifolds of solutions under perturbation.

• {smooth gi (x) ≤ 0} relative to active set {x : gj(x) = 0}
• PSD matrices Sn

+ relative to {X ∈ Sn
+ : rank(X ) = k}

• smooth f + || · ||1 relative to fixed sparsity pattern

• numerical radius ρ relative to disk matrices

(L-Overton ’20, Han-L ’20)

History: generalized “active constraints” in nonlinear
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Partial smoothness and algorithms

Diverse first-order methods identify the

manifold (L-Hare ’04. . . ), which drives

the local convergence.

Example: l1 regularization for sparsity.

Proximal gradient iterates settle on a

sparsity pattern (Hale-Yin-Zhang ’08).

min
x

f (x) = h(x) + λ‖x‖∗

Example: Nuclear norm regularization for low-rank optimization.

Proximal gradient (singular value thresholding) iterates settle on a

fixed-rank manifold, then converge linearly to the solution.

(Liang-Fadili-Peyré ’18)

5/24



Partial smoothness and algorithms

Diverse first-order methods identify the

manifold (L-Hare ’04. . . ), which drives

the local convergence.

Example: l1 regularization for sparsity.

Proximal gradient iterates settle on a

sparsity pattern (Hale-Yin-Zhang ’08).

min
x

f (x) = h(x) + λ‖x‖∗

Example: Nuclear norm regularization for low-rank optimization.

Proximal gradient (singular value thresholding) iterates settle on a

fixed-rank manifold, then converge linearly to the solution.

(Liang-Fadili-Peyré ’18)
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Generalized equations

Shift focus from optimization to optimality conditions:

x minimizes f ⇒ 0 ∈ ∂f (x).

Generalize: 0 ∈ Φ(u) for set-valued operator Φ on Rn.

• Variational inequalities

Find x ∈ Q so F (x)T (z − x) ≥ 0 for all z ∈ Q: equivalently,

0 ∈ F (x) + NQ(x).

• Composite optimization

minx h
(
c(x)

)
for convex h on Rm and smooth c into Rm.

Stationarity:

0 ∈

(
∇c(x)T y

−y

)
+

(
0

∂h(c(x))

)
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Partly smooth generalized equations (L-Liang ’18)

A set-valued operator Φ is partly smooth

at a solution ū for given data v̄

if

• gph Φ = {(u, v) : v ∈ Φ(u)}
is a manifold around (ū, v̄).

• proj : gph Φ→ Rn : (u, v) 7→ u

is constant rank around (ū, v̄). . .

(i.e. the projection of the graph’s tangent

space has locally constant dimension).

Asymptotic solvers then identify the active manifold

M = proj
(
gph Φ around (ū, v̄)

)
,

since vk ∈ Φ(uk) with (uk , vk)→ (ū, v̄) implies uk ∈M eventually.
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• proj : gph Φ→ Rn : (u, v) 7→ u

is constant rank around (ū, v̄). . .
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7/24



Partly smooth generalized equations (L-Liang ’18)

A set-valued operator Φ is partly smooth
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is constant rank around (ū, v̄). . .

(i.e. the projection of the graph’s tangent

space has locally constant dimension).

Asymptotic solvers then identify the active manifold

M = proj
(
gph Φ around (ū, v̄)

)
,

since vk ∈ Φ(uk) with (uk , vk)→ (ū, v̄) implies uk ∈M eventually.

7/24



Basic example: partly smooth sets

For closed convex (or “prox-regular”) S ⊂ Rn, suppose x̄ solves

min
x∈S
〈ȳ , x〉 and hence ȳ ∈ NS(x).

If S contains a ridge manifold M
(the normal cone NS(x) depends on

x ∈M continuously and spans NM(x)),

and nondegeneracy holds
(
ȳ ∈ ri

(
NS(x̄)

))
,

then the operator NS is partly smooth

at x̄ for ȳ , with active manifold M.

So if S is convex and x̄ is unique, projected gradient iterations

x ← projQ(x − αȳ) converge to x̄ (if α small) and identify M.
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Example: max functions of degree k

Given a decomposition

f (x) = max
i=1,...,k

fi (x),

using smooth components fi , call x̄ a strictly active critical point

when the values fi (x̄) are all equal, and the system∑
i

λi = 1,
∑
i

λi∇fi (x̄) = 0

has a unique solution, which furthermore has each λi > 0. Then

x 7→ ∂f (x) = conv{∇fi (x) : fi (x) = f (x)}

is partly smooth at x̄ for 0 relative to the active manifold M
of points where each fi has equal value.
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Sard-type behavior: partial smoothness is common

Sard’s Theorem: almost no values of smooth operators are critical.

What about set-valued operators and generalized equations on Rn?

Consider a semi-algebraic operator Φ with n-dimensional graph:

gph Φ =

q⋃
i=1

r⋂
j=1

{
(x , y) ∈ R2n : pij(x , y)

{ ≤
or

<

}
0
}

for polynomials pij . Eg: Subdifferentials, monotone operators. . .

Theorem Around generic data y , there are smooth maps Gi so

Φ−1 = {G1, . . . ,Gk} (possibly empty).

Φ is partly smooth for y at each solution xi = Gi (y), and

gph Φ intersects (Rn × {y}) transversally at (xi , y).

(Ioffe ’07, Bolte. . . ’11, Drusvyatskiy. . . ’16, Lee. . . ’19, L-Tian)
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Semi-Newton iterations for 0 ∈ Φ(u) (L-Wylie ’20)

Recast as set intersection: find a point z = (u, 0) where

X = gph Φ intersects Y = Rn × {0}.

Assume transversality: NX (z) ∩ NY (z) = {0}.

Step 1: Linearize X ;

intersect with Y .

Step 2: Restore to X via a

Lipschitz map fixing z .

Linearize around v ∈ Φ(u); solve for u′ u+ = ProjM(u′); v+ = ProjΦ(u+)(0)
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Fast black box nonsmooth optimization

Newtonian methods for partly smooth optimization 0 ∈ ∂f (x)

are interesting, but typically need structural knowledge of ∂f .

Classical special case: sequential quadratic programming.

More generally, semismooth Newton methods: Klatte-Kummer ’02,

Facchinei-Pang ’03, Izmailov-Solodov ’14, Gfrerer-Outrata ’19.

With just an oracle for linear approximations to convex f at input

points, bundle methods are appealing (Sagastizábal ’18 ICM).

• “Null” steps enhance a cutting plane model.

• “Serious” steps sufficiently decrease the objective

• Partial smoothness (“VU”) can accelerate the serious steps.

But can we reduce oracle calls using quadratic approximations?
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Second-order oracles for nonsmooth optimization

Convex f : Rn → R are twice differentiable off a negligible set N.

Black-box methods (bundle, BFGS) typically never encounter N.

What if an oracle returns f (x),∇f (x),∇2f (x) for x 6∈ N?

Aim: find a bundle S of k reference points, with small diameter

max{‖s − s ′‖ : s, s ′ ∈ S}

and small optimality measure

dist
(

0, conv
(
∇f (S)

))
.

Intuition: if the bundle size k is large enough,

lim
S→{x}

conv
(
∇f (S)

)
= ∂f (x).
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A k-bundle Newton method (L-Wylie ’19)

For each of the k current reference points s ∈ S , use the oracle

to form the linear and quadratic approximations

ls(x) = f (s) +∇f (s)T (x − s)

qs(x) = ls(x) +
1

2
(x − s)T∇2f (s)(x − s).

• Choose bundle weights λs solving

min
{∥∥∥∑

s∈S
λs∇f (s)

∥∥∥ : λ ≥ 0,
∑
s

λs = 1
}
.

• Choose a new reference point x solving

min
{∑

s

λsqs(x) : ls(s) equal for all s ∈ S
}
.

• Replace s ∈ S minimizing ‖∇f (s)−∇f (x)‖ with x .
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Motivating the bundle Newton method

Given a current bundle of reference points s ∈ S , model

f (x) ≈ max
s∈S

fs(x) :

unknown smooth component fs matches f to 2nd order around s.

Optimize model via sequential quadratic programming steps on{
minimize t

subject to fs(x) ≤ t (s ∈ S).

• Estimate multipliers via least squares.

• Minimize the quadratic approximation of the Lagrangian. . .

• . . . subject to the linearized constraints (assumed all active).

New point x improves model’s most closely matching component.
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Fast convergence on max functions

Theorem If f decomposes as max function of degree k ,

f (x) = max
i=1,...,k

fi (x),

where each component fi is smooth

and strongly convex

around a strictly active critical point x̄ , and

initial S = {s1, . . . , sk} is a full bundle near x̄ , meaning

fi (si ) > fj(si ) whenever i 6= j ,

then k-bundle Newton converges k-step quadratically to x̄ .

Note: The required bundle size k and the partly smooth

geometry of the active manifold M are related:

k + dimM = n + 1.

The classical Newton method has k = 1.
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A simple max function example

f (x , y) = 2x2 + y2 + |x2 − y |

Objective value against

oracle calls.

• Naive proximal bundle ∗
• Nonsmooth BFGS ◦
• 2-bundle Newton

(initiated from
proximal bundle)

• objective X

• optimality measure 4
• bundle diameter �

10−1

10−5

10−9

10−13

value

iterations 0 10 20 30
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An eigenvalue optimization example

f (s, t, u, v) = λmax

[
0 s t
s 1+u v
t v 1−u

]

− 1

Not a max function around its

minimizer, zero. But. . .

. . . partly smooth relative to a

2-dimensional manifold.

• Proximal bundle ∗
• BFGS ◦
• 3-bundle Newton

• objective X

• optimality 4
• diameter �

1

10−4

10−8

10−12

value

iterations 0 10 20 30
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The proof for max functions

Consider a maximum of smooth strongly convex components,

f (x) = max
i=1,...,k

fi (x),

with a strictly active critical point x̄ . on the active manifold M.

Near x on the active manifold M, full bundles S = {s1, . . . , sk}
(so fi (si ) > fj(si ) for i 6= j) approximate the subdifferential:

∂f (x) ≈ conv∇f (S),

and the Hessians ∇2f (si ) predict curvature on M.

Partly smooth geometry then ensures x̂ − x̄ = O(|x̄ − S |2).

Updating si ← x̂ keeps the bundle full, because x̄ is strictly active.

Each reference point si updates within k steps, by strong convexity.
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Finding an initial bundle

Black-box methods for finding a minimizer x̄ for nonsmooth f , like

• bundle methods (Lemaréchal, Wolfe ’70’s)

• BFGS (L-Overton ’13)

• gradient sampling (Burke-L-Overton ’05)

asymptotically generate subdifferential approximations:

∂f (x̄) ≈ conv
(
∇f (Ω)

)
for sets Ω of points near x̄ . So, we could choose

k = dim
(

affine span
(
∇f (Ω)

))
(numerically)

and initial S ⊂ Ω of size k with ∇f (S) affinely independent.
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Example: eigenvalue optimization

For random 25-by-25 symmetric matrices, minimize λmax for

A(x) = A0 + x1A1 + x2A2 + . . .+ x50A50.

Active manifold, where λmax

(
A(x)

)
has multiplicity 6, has dim 30.

f −min f

500 1000 1500
Black box evaluations

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS

λ1(A(x))− λ6(A(x))

200 400 600 800
Iteration

101

10−4

10−9

10−14

Bundle Newton

Bundle Method

BFGS
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Extensions. . .

• Avoiding Hessians. . .

• . . . using automatic differentiation X

• . . . with a linearly convergent first-order analogue X?

• Extending the local convergence analysis. . .

• . . . to nonconvex max functions X

• . . . to partly smooth functions ??

• Globalizing the algorithm ??
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Take-away. . .

Partial smoothness is a simple differential-geometric idea that

captures the generic interplay between smooth and nonsmooth

geometry in concrete variational problems, illuminating the analysis

and design of algorithms.
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